Fluids and Barriers of the CNS最新文献

筛选
英文 中文
Associations between the choroid plexus and tau in Alzheimer's disease using an active learning segmentation pipeline. 利用主动学习分割管道分析阿尔茨海默病脉络丛与 tau 之间的关联。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-07-12 DOI: 10.1186/s12987-024-00554-4
Jiaxin Li, Yueqin Hu, Yunzhi Xu, Xue Feng, Craig H Meyer, Weiying Dai, Li Zhao
{"title":"Associations between the choroid plexus and tau in Alzheimer's disease using an active learning segmentation pipeline.","authors":"Jiaxin Li, Yueqin Hu, Yunzhi Xu, Xue Feng, Craig H Meyer, Weiying Dai, Li Zhao","doi":"10.1186/s12987-024-00554-4","DOIUrl":"10.1186/s12987-024-00554-4","url":null,"abstract":"<p><strong>Background: </strong>The cerebrospinal fluid (CSF), primarily generated by the choroid plexus (ChP), is the major carrier of the glymphatic system. The alternations of CSF production and the ChP can be associated with the Alzheimer's disease (AD). The present work investigated the roles of the ChP in the AD based on a proposed ChP image segmentation pipeline.</p><p><strong>Methods: </strong>A human-in-the-loop ChP image segmentation pipeline was implemented with intermediate and active learning datasets. The performance of the proposed pipeline was evaluated on manual contours by five radiologists, compared to the FreeSurfer and FastSurfer toolboxes. The ChP volume and blood flow were investigated among AD groups. The correlations between the ChP volume and AD CSF biomarkers including phosphorylated tau (p-tau), total tau (t-tau), amyloid-β42 (Aβ42), and amyloid-β40 (Aβ40) was investigated using three models (univariate, multiple variables, and stepwise regression) on two datasets with 806 and 320 subjects.</p><p><strong>Results: </strong>The proposed ChP segmentation pipeline achieved superior performance with a Dice coefficient of 0.620 on the test dataset, compared to the FreeSurfer (0.342) and FastSurfer (0.371). Significantly larger volumes (p < 0.001) and higher perfusion (p = 0.032) at the ChP were found in AD compared to CN groups. Significant correlations were found between the tau and the relative ChP volume (the ChP volume and ChP/parenchyma ratio) in each patient groups and in the univariate regression analysis (p < 0.001), the multiple regression model (p < 0.05 except for the t-tau in the LMCI), and in the step-wise regression model (p < 0.021). In addition, the correlation coefficients changed from - 0.32 to - 0.21 along with the AD progression in the multiple regression model. In contrast, the Aβ42 and Aβ40 shows consistent and significant associations with the lateral ventricle related measures in the step-wise regression model (p < 0.027).</p><p><strong>Conclusions: </strong>The proposed pipeline provided accurate ChP segmentation which revealed the associations between the ChP and tau level in the AD. The proposed pipeline is available on GitHub ( https://github.com/princeleeee/ChP-Seg ).</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"56"},"PeriodicalIF":5.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSF formation rate—a potential glymphatic flow parameter in hydrocephalus? 脑脊液形成率--脑积水的潜在血流参数?
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-07-10 DOI: 10.1186/s12987-024-00560-6
Sara Qvarlander, Nina Sundström, Jan Malm, Anders Eklund
{"title":"CSF formation rate—a potential glymphatic flow parameter in hydrocephalus?","authors":"Sara Qvarlander, Nina Sundström, Jan Malm, Anders Eklund","doi":"10.1186/s12987-024-00560-6","DOIUrl":"https://doi.org/10.1186/s12987-024-00560-6","url":null,"abstract":"Studies indicate that brain clearance via the glymphatic system is impaired in idiopathic normal pressure hydrocephalus (INPH). This has been suggested to result from reduced cerebrospinal fluid (CSF) turnover, which could be caused by a reduced CSF formation rate. The aim of this study was to determine the formation rate of CSF in a cohort of patients investigated for INPH and compare this to a historical control cohort. CSF formation rate was estimated in 135 (75 ± 6 years old, 64/71 men/women) patients undergoing investigation for INPH. A semiautomatic CSF infusion investigation (via lumbar puncture) was performed. CSF formation rate was assessed by downregulating and steadily maintaining CSF pressure at a zero level. During the last 10 min, the required outflow to maintain zero pressure, i.e., CSF formation rate, was continuously measured. The values were compared to those of a historical reference cohort from a study by Ekstedt in 1978. Mean CSF formation rate was 0.45 ± 0.15 ml/min (N = 135), equivalent to 27 ± 9 ml/hour. There was no difference in the mean (p = 0.362) or variance (p = 0.498) of CSF formation rate between the subjects that were diagnosed as INPH (N = 86) and those who were not (N = 43). The CSF formation rate in INPH was statistically higher than in the reference cohort (0.46 ± 0.15 vs. 0.40 ± 0.08 ml/min, p = 0.005), but the small difference was probably not physiologically relevant. There was no correlation between CSF formation rate and baseline CSF pressure (r = 0.136, p = 0.115, N = 135) or age (-0.02, p = 0.803, N = 135). The average CSF formation rate in INPH was not decreased compared to the healthy reference cohort, which does not support reduced CSF turnover. This emphasizes the need to further investigate the source and routes of the flow in the glymphatic system and the cause of the suggested impaired glymphatic clearance in INPH.","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"27 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ventriculoperitoneal shunt patients and glaucoma: a cohort analysis of the NPH registry. 脑室腹腔分流术患者与青光眼:NPH 登记的队列分析。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-07-09 DOI: 10.1186/s12987-024-00558-0
Benjam Kemiläinen, Kai Kaarniranta, Ville Leinonen
{"title":"Ventriculoperitoneal shunt patients and glaucoma: a cohort analysis of the NPH registry.","authors":"Benjam Kemiläinen, Kai Kaarniranta, Ville Leinonen","doi":"10.1186/s12987-024-00558-0","DOIUrl":"10.1186/s12987-024-00558-0","url":null,"abstract":"<p><strong>Background: </strong>Idiopathic Normal Pressure Hydrocephalus (iNPH) is a chronic condition affecting the elderly. It is characterized by a triad of symptoms and radiological findings. Glaucoma is the leading cause of irreversible blindness worldwide. Earlier studies have proposed that the rate of glaucoma is higher in iNPH patients, and of a possible link between ventriculoperitoneal shunt (VP) treatment and the development of glaucoma.</p><p><strong>Objectives: </strong>This study aimed to determine the prevalence of glaucoma among iNPH patients and assess the impact of VPs on glaucoma prevalence.</p><p><strong>Methods: </strong>A cohort study was conducted at Kuopio University Hospital (KUH), including 262 patients with a ventriculoperitoneal shunt. Clinical data were obtained from the Kuopio NPH Registry and medical records. Patients were grouped by iNPH status: iNPH (+) - probable/possible iNPH (n = 192), and iNPH (-) - other causes of hydrocephalus (congenital, secondary, obstructive) (n = 70). We conducted statistical analysis using the Independent Samples T-test, Fisher's exact test, and Pearson Chi-Square. We compared demographics, glaucoma prevalence, brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) as well as comorbidities for hypertension and diabetes medication. Age stratification assessed glaucoma prevalence in the full cohort.</p><p><strong>Results: </strong>Both iNPH (+) and iNPH (-) groups had comparable demographic and comorbidity profiles. The prevalence of glaucoma in the iNPH (+) group was 11.5% (n = 22) and 11.4% (n = 8) in the iNPH (-) group without a statistically significant difference (p = 1.000). Brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) were similar.</p><p><strong>Conclusions: </strong>Neither shunted iNPH patients nor those with a comorbid condition other than iNPH showed a markedly higher prevalence of glaucoma. Instead, both groups exhibited age-related increases in glaucoma prevalence, similar to the trends observed in population-based studies. Our data does not suggest a correlation between VP shunts and an elevated rate of glaucoma.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"54"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of aquaporin-4 and CD11c + microglia in the development of ependymal cells in the aqueduct: inferences to hydrocephalus. 水肿素-4和CD11c +小胶质细胞在导水管上皮细胞发育过程中的影响:对脑积水的推论。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-07-02 DOI: 10.1186/s12987-024-00548-2
Francisco Mayo, Lourdes González-Vinceiro, Laura Hiraldo-González, Francisco D Rodríguez-Gómez, Claudia Calle-Castillejo, Manuel Mayo, Vanina Netti, Reposo Ramírez-Lorca, Miriam Echevarría
{"title":"Impact of aquaporin-4 and CD11c + microglia in the development of ependymal cells in the aqueduct: inferences to hydrocephalus.","authors":"Francisco Mayo, Lourdes González-Vinceiro, Laura Hiraldo-González, Francisco D Rodríguez-Gómez, Claudia Calle-Castillejo, Manuel Mayo, Vanina Netti, Reposo Ramírez-Lorca, Miriam Echevarría","doi":"10.1186/s12987-024-00548-2","DOIUrl":"10.1186/s12987-024-00548-2","url":null,"abstract":"<p><p>AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4<sup>-/-</sup> mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4<sup>-/-</sup> mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"53"},"PeriodicalIF":5.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pumilio-1 mediated translational control of claudin-5 at the blood-brain barrier. Pumilio-1介导的血脑屏障中Claudin-5的翻译控制。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-06-19 DOI: 10.1186/s12987-024-00553-5
Yosuke Hashimoto, Chris Greene, Nicole Hanley, Natalie Hudson, David Henshall, Kieron J Sweeney, Donncha F O'Brien, Matthew Campbell
{"title":"Pumilio-1 mediated translational control of claudin-5 at the blood-brain barrier.","authors":"Yosuke Hashimoto, Chris Greene, Nicole Hanley, Natalie Hudson, David Henshall, Kieron J Sweeney, Donncha F O'Brien, Matthew Campbell","doi":"10.1186/s12987-024-00553-5","DOIUrl":"10.1186/s12987-024-00553-5","url":null,"abstract":"<p><p>Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"52"},"PeriodicalIF":5.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. 缺血性水肿早期脑液生理变化
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-06-10 DOI: 10.1186/s12987-024-00534-8
Stephen B Hladky, Margery A Barrand
{"title":"Alterations in brain fluid physiology during the early stages of development of ischaemic oedema.","authors":"Stephen B Hladky, Margery A Barrand","doi":"10.1186/s12987-024-00534-8","DOIUrl":"10.1186/s12987-024-00534-8","url":null,"abstract":"<p><p>Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na<sup>+</sup> and Cl<sup>-</sup> and loss of K<sup>+</sup>; neuronal swelling; astrocytic uptake of Na<sup>+</sup>, K<sup>+</sup> and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K<sup>+</sup>]<sub>isf</sub> triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"51"},"PeriodicalIF":7.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: impact of sex differences on thrombin‑induced hydrocephalus and white matter injury: the role of neutrophils 更正:性别差异对凝血酶诱发脑积水和白质损伤的影响:中性粒细胞的作用
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-06-05 DOI: 10.1186/s12987-024-00551-7
Kang Peng, Sravanthi Koduri, Fan Xia, Feng Gao, Ya Hua, Richard F. Keep, Guohua Xi
{"title":"Correction: impact of sex differences on thrombin‑induced hydrocephalus and white matter injury: the role of neutrophils","authors":"Kang Peng, Sravanthi Koduri, Fan Xia, Feng Gao, Ya Hua, Richard F. Keep, Guohua Xi","doi":"10.1186/s12987-024-00551-7","DOIUrl":"https://doi.org/10.1186/s12987-024-00551-7","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: fluids barriers CNS 18, 38 (2021)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s12987-021-00273-0&lt;/b&gt;&lt;/p&gt;&lt;p&gt;The original publication of this article [1] should have stated that one image in Fig. 1A had been published previously.&lt;/p&gt;&lt;p&gt;This is corrected in the legend below in bold and the original publication has been updated.&lt;/p&gt;&lt;p&gt;Figure 1 Intracerebroventricular injection of thrombin induced severe ventricular dilation, ventricular wall damage, and neutrophil infiltration in male rats. A T2 weighted MRI showing ventricular volume at 24 h after ICV injection of 50 µl of saline or thrombin (3U) in male rats. &lt;b&gt;The bottom left image of this panel has been published previously&lt;/b&gt; [2]. B Representative images of H&amp;E staining showing ependymal denudation and rupture (arrows) at 24 h in the thrombin (3U) but not the saline group. Scale bar = 50 mm. C Representative H&amp;E and myeloperoxidase (MPO) staining of the choroid plexus and ventricle wall 24 h after thrombin or saline injection. Note the neutrophil infiltration into the choroid plexus and the ventricular wall damage in the thrombin injection group. Lower magnification, scale bar = 50 μm; higher magnification, scale bar = 10 μm.&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Peng K, Koduri S, Xia F, et al. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS. 2021;18:38. https://doi.org/10.1186/s12987-021-00273-0&lt;/p&gt;&lt;p&gt;Article CAS PubMed PubMed Central Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;li data-counter=\"2.\"&gt;&lt;p&gt;Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. Activation of Epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther. 2019;25(10):1134–41.&lt;/p&gt;&lt;p&gt;Article CAS PubMed PubMed Central Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109‑2200, USA&lt;/p&gt;&lt;p&gt;Kang Peng, Sravanthi Koduri, Fan Xia, Feng Gao, Ya Hua, Richard F. Keep &amp; Guohua Xi&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China&lt;/p&gt;&lt;p&gt;Kang Peng&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Kang Peng&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Sravanthi Koduri&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Fan Xia&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Feng Gao&lt;/span&gt;View author publ","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"66 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An "outer subarachnoid space": fact or artifact? A commentary on "Structural characterization of SLYM- a 4th meningeal membrane" fluids and barriers of the CNS (2023) 20:93 by V. Plá et al. 蛛网膜下腔外部空间":事实还是假象?V.Plá等人就 "SLYM--第四脑膜的结构特征 "中枢神经系统的流体和屏障(2023)20:93发表的评论。
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-06-03 DOI: 10.1186/s12987-024-00539-3
Winfried Neuhuber
{"title":"An \"outer subarachnoid space\": fact or artifact? A commentary on \"Structural characterization of SLYM- a 4th meningeal membrane\" fluids and barriers of the CNS (2023) 20:93 by V. Plá et al.","authors":"Winfried Neuhuber","doi":"10.1186/s12987-024-00539-3","DOIUrl":"10.1186/s12987-024-00539-3","url":null,"abstract":"","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"48"},"PeriodicalIF":7.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In response to "An "outer subarachnoid space": fact or artifact? A commentary on "Structural characterization of SLYM: a 4th meningeal membrane" fluids and barriers of the CNS (2023) 20:93 by V. Plá et al." 回应《"蛛网膜下腔外部空间":事实还是假象?V.Plá等人对 "SLYM的结构特征:第四脑膜 "中枢神经系统的流体和屏障(2023)20:93的评论"。
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-06-03 DOI: 10.1186/s12987-024-00540-w
Virginia Plá, Styliani Bitsika, Michael J Giannetto, Antonio Ladron-de-Guevara, Daniel Gahn-Martinez, Yuki Mori, Maiken Nedergaard, Kjeld Møllgård
{"title":"In response to \"An \"outer subarachnoid space\": fact or artifact? A commentary on \"Structural characterization of SLYM: a 4th meningeal membrane\" fluids and barriers of the CNS (2023) 20:93 by V. Plá et al.\"","authors":"Virginia Plá, Styliani Bitsika, Michael J Giannetto, Antonio Ladron-de-Guevara, Daniel Gahn-Martinez, Yuki Mori, Maiken Nedergaard, Kjeld Møllgård","doi":"10.1186/s12987-024-00540-w","DOIUrl":"10.1186/s12987-024-00540-w","url":null,"abstract":"","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"49"},"PeriodicalIF":7.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling cerebrospinal fluid dynamics across the entire intracranial space through integration of four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging. 通过整合四维血流和体内非相干运动磁共振成像,建立整个颅内空间的脑脊液动力学模型。
IF 7.3 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-05-30 DOI: 10.1186/s12987-024-00552-6
Shigeki Yamada, Tomohiro Otani, Satoshi Ii, Hirotaka Ito, Chifumi Iseki, Motoki Tanikawa, Yoshiyuki Watanabe, Shigeo Wada, Marie Oshima, Mitsuhito Mase
{"title":"Modeling cerebrospinal fluid dynamics across the entire intracranial space through integration of four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging.","authors":"Shigeki Yamada, Tomohiro Otani, Satoshi Ii, Hirotaka Ito, Chifumi Iseki, Motoki Tanikawa, Yoshiyuki Watanabe, Shigeo Wada, Marie Oshima, Mitsuhito Mase","doi":"10.1186/s12987-024-00552-6","DOIUrl":"10.1186/s12987-024-00552-6","url":null,"abstract":"<p><strong>Background: </strong>Bidirectional reciprocal motion of cerebrospinal fluid (CSF) was quantified using four-dimensional (4D) flow magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) MRI. To estimate various CSF motions in the entire intracranial region, we attempted to integrate the flow parameters calculated using the two MRI sequences. To elucidate how CSF dynamics deteriorate in Hakim's disease, an age-dependent chronic hydrocephalus, flow parameters were estimated from the two MRI sequences to assess CSF motion in the entire intracranial region.</p><p><strong>Methods: </strong>This study included 127 healthy volunteers aged ≥ 20 years and 44 patients with Hakim's disease. On 4D flow MRI for measuring CSF motion, velocity encoding was set at 5 cm/s. For the IVIM MRI analysis, the diffusion-weighted sequence was set at six b-values (i.e., 0, 50, 100, 250, 500, and 1000 s/mm<sup>2</sup>), and the biexponential IVIM fitting method was adapted. The relationships between the fraction of incoherent perfusion (f) on IVIM MRI and 4D flow MRI parameters including velocity amplitude (VA), absolute maximum velocity, stroke volume, net flow volume, and reverse flow rate were comprehensively evaluated in seven locations in the ventricles and subarachnoid spaces. Furthermore, we developed a new parameter for fluid oscillation, the Fluid Oscillation Index (FOI), by integrating these two measurements. In addition, we investigated the relationship between the measurements and indices specific to Hakim's disease and the FOIs in the entire intracranial space.</p><p><strong>Results: </strong>The VA on 4D flow MRI was significantly associated with the mean f-values on IVIM MRI. Therefore, we estimated VA that could not be directly measured on 4D flow MRI from the mean f-values on IVIM MRI in the intracranial CSF space, using the following formula; e<sup>0.2(f-85)</sup> + 0.25. To quantify fluid oscillation using one integrated parameter with weighting, FOI was calculated as VA × 10 + f × 0.02. In addition, the FOIs at the left foramen of Luschka had the strongest correlations with the Evans index (Pearson's correlation coefficient: 0.78). The other indices related with Hakim's disease were significantly associated with the FOIs at the cerebral aqueduct and bilateral foramina of Luschka. FOI at the cerebral aqueduct was also elevated in healthy controls aged ≥ 60 years.</p><p><strong>Conclusions: </strong>We estimated pulsatile CSF movements in the entire intracranial CSF space in healthy individuals and patients with Hakim's disease using FOI integrating VA from 4D flow MRI and f-values from IVIM MRI. FOI is useful for quantifying the CSF oscillation.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"47"},"PeriodicalIF":7.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信