Fluids and Barriers of the CNS最新文献

筛选
英文 中文
Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells. 突变的 LRRK2 可诱导反应表型并改变人 iPSC 衍生的周细胞样细胞的迁移。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-11-18 DOI: 10.1186/s12987-024-00592-y
Sanni Peltonen, Tuuli-Maria Sonninen, Jonna Niskanen, Jari Koistinaho, Marika Ruponen, Šárka Lehtonen
{"title":"Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells.","authors":"Sanni Peltonen, Tuuli-Maria Sonninen, Jonna Niskanen, Jari Koistinaho, Marika Ruponen, Šárka Lehtonen","doi":"10.1186/s12987-024-00592-y","DOIUrl":"10.1186/s12987-024-00592-y","url":null,"abstract":"<p><strong>Background: </strong>Pericytes play a crucial role in controlling inflammation and vascular functions in the central nervous system, which are disrupted in Parkinson's disease (PD). Still, there is a lack of studies on the impact of pericytes on neurodegenerative diseases, and their involvement in the pathology of PD is unclear. Our objective was to investigate the molecular and functional differences between healthy pericytes and pericytes with the LRRK2 G2019S mutation, which is one of the most common mutations associated with PD.</p><p><strong>Methods: </strong>Our study employed pericyte-like cells obtained from induced pluripotent stem cells produced from PD patients with the LRRK2 G2019S mutation as well as from healthy individuals. We examined the gene expression profiles of the cells and analyzed how the alterations reflect on their functionality.</p><p><strong>Results: </strong>We have shown differences in the expression of genes related to inflammation and angiogenesis. Furthermore, we observe modified migration speed in PD pericyte-like cells as well as enhanced secretion of inflammatory mediators, such as soluble VCAM-1 and MCP-1, in these pericyte-like cells following exposure to proinflammatory stimuli.</p><p><strong>Conclusions: </strong>In summary, our findings support the notion that pericytes play a role in the inflammatory and vascular changes observed in PD. Further investigation of pericytes could provide valuable insight into understanding the pathogenesis of PD.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"92"},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C1-inhibitor to prevent intracerebral hemorrhage-related secondary brain injury. C1 抑制剂,预防脑出血相关继发性脑损伤。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-11-15 DOI: 10.1186/s12987-024-00594-w
Kevin Akeret, Bart R Thomson, Subhajit Ghosh, Marc Nolte, Urs Fischer, Rok Humar, Luca Regli, Dominik J Schaer, Michael Hugelshofer, Raphael M Buzzi
{"title":"C1-inhibitor to prevent intracerebral hemorrhage-related secondary brain injury.","authors":"Kevin Akeret, Bart R Thomson, Subhajit Ghosh, Marc Nolte, Urs Fischer, Rok Humar, Luca Regli, Dominik J Schaer, Michael Hugelshofer, Raphael M Buzzi","doi":"10.1186/s12987-024-00594-w","DOIUrl":"10.1186/s12987-024-00594-w","url":null,"abstract":"<p><strong>Background: </strong>Preclinical studies indicate that the systemic application of C1-inhibitor, clinically used to treat hereditary angioedema, reduces secondary brain injury after ischemic stroke. This study assessed the effect of C1-inhibitor on secondary brain injury after hemorrhagic stroke.</p><p><strong>Methods: </strong>We used an established striatal whole-blood injection mouse model to mimic intracerebral hemorrhage-related secondary brain injury. Based on the spatiotemporal dynamics in our model, we calculated the necessary sample size (n = 24) and determined the most sensitive time point to detect potential group differences (48 h) prior to the experiments. The experimental setup, tissue processing and image analysis adhered to our published protocol. We randomized mice into three groups: C1-inhibitor treatment, placebo, and sham. Histology was standardized by taking eight anatomically predefined slices across the entire lesion. Lesion size, vascular leakage, and inflammatory responses were assessed using automated thresholding and dextran/ICAM1/CD45 intensity mapping. Investigators were blinded to group allocation during the experiment, tissue processing, and image analysis.</p><p><strong>Results: </strong>Whole blood injection resulted in significantly larger lesion size and more pronounced vascular leakage and cellular inflammation compared to the sham group. However, there was no difference in lesion size or inflammatory markers between the C1-inhibitor and placebo groups. In addition, there was no difference in the inflammatory response of the choroid plexus, which has been identified as a central organ orchestrating inflammation after intracerebral hemorrhage.</p><p><strong>Conclusion: </strong>The protective effect of C1-inhibitor might be isolated to pathophysiological processes with a predominant thromboinflammatory component, as in ischemia-reperfusion, but less so in permanent ischemia or intracerebral hemorrhage.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"91"},"PeriodicalIF":5.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit. 利用基于人类多能干细胞的神经血管单元模型,探索与青光眼相关的功能障碍表型。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-11-14 DOI: 10.1186/s12987-024-00593-x
Sailee S Lavekar, Jason M Hughes, Cátia Gomes, Kang-Chieh Huang, Jade Harkin, Scott G Canfield, Jason S Meyer
{"title":"Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit.","authors":"Sailee S Lavekar, Jason M Hughes, Cátia Gomes, Kang-Chieh Huang, Jade Harkin, Scott G Canfield, Jason S Meyer","doi":"10.1186/s12987-024-00593-x","DOIUrl":"10.1186/s12987-024-00593-x","url":null,"abstract":"<p><p>Glaucoma is a neurodegenerative disease that results in the degeneration of retinal ganglion cells (RGCs) and subsequent loss of vision. While RGCs are the primary cell type affected in glaucoma, neighboring cell types selectively modulate RGCs to maintain overall homeostasis. Among these neighboring cell types, astrocytes, microvascular endothelial cells (MVECs), and pericytes coordinate with neurons to form the neurovascular unit that provides a physical barrier to limit the passage of toxic materials from the blood into neural tissue. Previous studies have demonstrated that these barrier properties may be compromised in the progression of glaucoma, yet mechanisms by which this happens have remained incompletely understood. Thus, the goals of this study were to adapt a human pluripotent stem cell (hPSC)-based model of the neurovascular unit to the study of barrier integrity relevant to glaucoma. To achieve this, hPSCs were differentiated into the cell types that contribute to this barrier, including RGCs, astrocytes, and MVECs, then assembled into an established Transwell<sup>®</sup>-insert model. The ability of these cell types to contribute to an in vitro barrier model was tested for their ability to recapitulate characteristic barrier properties. Results revealed that barrier properties of MVECs were enhanced when cultured in the presence of RGCs and astrocytes compared to MVECs cultured alone. Conversely, the versatility of this system to model aspects of barrier dysfunction relevant to glaucoma was tested using an hPSC line with a glaucoma-specific Optineurin (E50K) mutation as well as a paired isogenic control, where MVECs then exhibited reduced barrier integrity. To identify factors that could result in barrier dysfunction, results revealed an increased expression of TGFβ2 in glaucoma-associated OPTN(E50K) astrocytes, indicating a potential role for TGFβ2 in disease manifestation. To test this hypothesis, we explored the ability to modulate exogenous TGFβ2 in both isogenic control and OPTN(E50K) experimental conditions. Collectively, the results of this study indicated that the repurposing of this in vitro barrier model for glaucoma reliably mimicked some aspects of barrier dysfunction, and may serve as a platform for drug discovery, as well as a powerful in vitro model to test the consequences of barrier dysfunction upon RGCs in glaucoma.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"90"},"PeriodicalIF":5.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood-brain barrier permeability increases with the differentiation of glioblastoma cells in vitro. 血脑屏障的通透性会随着胶质母细胞瘤细胞在体外的分化而增加。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-11-01 DOI: 10.1186/s12987-024-00590-0
Sabrina Digiovanni, Martina Lorenzati, Olga Teresa Bianciotto, Martina Godel, Simona Fontana, Muhlis Akman, Costanzo Costamagna, Pierre-Olivier Couraud, Annalisa Buffo, Joanna Kopecka, Chiara Riganti, Iris Chiara Salaroglio
{"title":"Blood-brain barrier permeability increases with the differentiation of glioblastoma cells in vitro.","authors":"Sabrina Digiovanni, Martina Lorenzati, Olga Teresa Bianciotto, Martina Godel, Simona Fontana, Muhlis Akman, Costanzo Costamagna, Pierre-Olivier Couraud, Annalisa Buffo, Joanna Kopecka, Chiara Riganti, Iris Chiara Salaroglio","doi":"10.1186/s12987-024-00590-0","DOIUrl":"10.1186/s12987-024-00590-0","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma multiforme (GBM) is an aggressive tumor, difficult to treat pharmacologically because of the blood-brain barrier (BBB), which is rich in ATP-binding cassette (ABC) transporters and tight junction (TJ) proteins. The BBB is disrupted within GBM bulk, but it is competent in brain-adjacent-to-tumor areas, where eventual GBM foci can trigger tumor relapse. How GBM cells influence the permeability of BBB is poorly investigated.</p><p><strong>Methods: </strong>To clarify this point, we co-cultured human BBB models with 3 patient-derived GBM cells, after separating from each tumor the stem cell/neurosphere (SC/NS) and the differentiated/adherent cell (AC) components. Also, we set up cultures of BBB cells with the conditioned medium of NS or AC, enriched or depleted of IL-6. Extracellular cytokines were measured by protein arrays and ELISA. The intracellular signaling in BBB cells was measured by immunoblotting, in the presence of STAT3 pharmacological inhibitor or specific PROTAC. The competence of BBB was evaluated by permeability assays and TEER measurement.</p><p><strong>Results: </strong>The presence of GBM cells or their conditioned medium increased the permeability to doxorubicin, mitoxantrone and dextran-70, decreased TEER, down-regulated ABC transporters and TJ proteins at the transcriptional level. These effects were higher with AC or their medium than with NS. The secretome analysis identified IL-6 as significantly more produced by AC than by NS. Notably, AC-conditioned medium treated with an IL-6 neutralizing antibody reduced the BBB permeability to NS levels, while NS-conditioned medium enriched with IL-6 increased BBB permeability to AC levels. Mechanistically, IL-6 released by AC GBM cells activated STAT3 in BBB cells. In turn, STAT3 down-regulated ABC transporter and TJ expression, increased permeability and decreased TEER. The same effects were obtained in BBB cells treated with STA-21, a pharmacological inhibitor of STAT3, or with a PROTAC targeting STAT3.</p><p><strong>Conclusions: </strong>Our work demonstrates for the first time that the degree of GBM differentiation influences BBB permeability. The crosstalk between GBM cells that release IL-6 and BBB cells that respond by activating STAT3, controls the expression of ABC transporters and TJ proteins on BBB. These results may pave the way for novel therapeutic tools to tune BBB permeability and improve drug delivery to GBM.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"89"},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-contrast MRI analysis of cerebral blood and CSF flow dynamic interactions. 脑血流和脑脊液流动态相互作用的相位对比 MRI 分析。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-28 DOI: 10.1186/s12987-024-00578-w
Kimi Piedad Owashi, Pan Liu, Serge Metanbou, Cyrille Capel, Olivier Balédent
{"title":"Phase-contrast MRI analysis of cerebral blood and CSF flow dynamic interactions.","authors":"Kimi Piedad Owashi, Pan Liu, Serge Metanbou, Cyrille Capel, Olivier Balédent","doi":"10.1186/s12987-024-00578-w","DOIUrl":"10.1186/s12987-024-00578-w","url":null,"abstract":"<p><strong>Background: </strong>Following the Monro-Kellie doctrine, the Cerebral Blood Volume Changes (CB_VC) should be mirrored by the Cerebrospinal Fluid Volume Changes (CSF_VC) at the spinal canal. Cervical level is often chosen to estimate CB_VC during the cardiac cycle. However, due to the heterogeneity in the anatomy of extracranial internal jugular veins and their high compliance, we hypothesize that the intracranial level could be a better choice to investigate blood and cerebrospinal fluid (CSF) interactions. This study aims to determine which level, intracranial or extracranial, is more suitable for measuring arterial and venous flows to study cerebral blood and CSF dynamics interactions.</p><p><strong>Methods: </strong>The spinal CSF and cerebral blood flow measured at intracranial and extracranial levels were quantified using cine phase-contrast magnetic resonance imaging (PC-MRI) in 38 healthy young adults. Subsequently, CSF_VC and CB_VC were calculated, and by linear regression analysis (R<sup>2</sup> and slope), the relationship between CB_VC at both levels and the spinal CSF_VC was compared. The differences between extracranial and intracranial measurements were assessed using either a paired Student's t-test or Wilcoxon's test, depending on the normality of the data distribution.</p><p><strong>Results: </strong>The CB_VC amplitude was significantly higher at the extracranial level (0.89 ± 0.28 ml/CC) compared to the intracranial level (0.73 ± 0.19 ml/CC; p < 0.001). CSF oscillations through the spinal canal do not completely balance blood volume changes. The R<sup>2</sup> and the slope values obtained from the linear regression analysis between CSF and blood flows were significantly higher in magnitude for the intracranial CB_VC (R<sup>2</sup>: 0.82 ± 0.16; slope: - 0.74 ± 0.19) compared to the extracranial CB_VC (R<sup>2</sup>: 0.47 ± 0.37; slope: -0.36 ± 0.33; p < 0.001). Interestingly, extracranial CB_VC showed a greater variability compared to intracranial CB_VC.</p><p><strong>Conclusion: </strong>Our results confirmed that CSF does not completely and instantaneously balance cerebral blood expansion during the cardiac cycle. Nevertheless, the resting volume is very small compared to the total intracranial volume. To our knowledge, this study is the first to demonstrate these findings using cerebral blood flow measured intracranially below the Circle of Willis. Additionally, our findings show that cerebral arterial and venous flow dynamic measurements during the cardiac cycle obtained by PC-MRI at the intracranial plane strongly correlate with CSF oscillations measured in the spinal canal. Therefore, the intracranial vascular plane is more relevant for analyzing cerebral blood and CSF interactions during the cardiac cycle compared to measurements taken at the cervical vascular level.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"88"},"PeriodicalIF":5.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[11C]Metoclopramide PET can detect a seizure-induced up-regulation of cerebral P-glycoprotein in epilepsy patients. [11C]甲氧氯普胺正电子发射计算机断层扫描可检测癫痫患者发作引起的脑P-糖蛋白上调。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-28 DOI: 10.1186/s12987-024-00588-8
Myriam El Biali, Louise Breuil, Matthias Jackwerth, Severin Mairinger, Maria Weber, Michael Wölfl-Duchek, Karsten Bamminger, Ivo Rausch, Lukas Nics, Marcus Hacker, Sebastian Rodrigo, Viviane Bouilleret, Markus Zeitlinger, Ekaterina Pataraia, Nicolas Tournier, Martin Bauer, Oliver Langer
{"title":"[<sup>11</sup>C]Metoclopramide PET can detect a seizure-induced up-regulation of cerebral P-glycoprotein in epilepsy patients.","authors":"Myriam El Biali, Louise Breuil, Matthias Jackwerth, Severin Mairinger, Maria Weber, Michael Wölfl-Duchek, Karsten Bamminger, Ivo Rausch, Lukas Nics, Marcus Hacker, Sebastian Rodrigo, Viviane Bouilleret, Markus Zeitlinger, Ekaterina Pataraia, Nicolas Tournier, Martin Bauer, Oliver Langer","doi":"10.1186/s12987-024-00588-8","DOIUrl":"10.1186/s12987-024-00588-8","url":null,"abstract":"<p><strong>Background: </strong>P-glycoprotein (P-gp) is an efflux transporter which is abundantly expressed at the blood-brain barrier (BBB) and which has been implicated in the pathophysiology of various brain diseases. The radiolabelled antiemetic drug [<sup>11</sup>C]metoclopramide is a P-gp substrate for positron emission tomography (PET) imaging of P-gp function at the BBB. To assess whether [<sup>11</sup>C]metoclopramide can detect increased P-gp function in the human brain, we employed drug-resistant temporal lobe epilepsy (TLE) as a model disease with a well characterised, regional P-gp up-regulation at the BBB.</p><p><strong>Methods: </strong>Eight patients with drug-resistant (DRE) TLE, 5 seizure-free patients with drug-sensitive (DSE) focal epilepsy, and 15 healthy subjects underwent brain PET imaging with [<sup>11</sup>C]metoclopramide on a fully-integrated PET/MRI system. Concurrent with PET, arterial blood sampling was performed to generate a metabolite-corrected arterial plasma input function for kinetic modelling. The choroid plexus was outmasked on the PET images to remove signal contamination from the neighbouring hippocampus. Using a brain atlas, 10 temporal lobe sub-regions were defined and analysed with a 1-tissue-2-rate constant compartmental model to estimate the rate constants for radiotracer transfer from plasma to brain (K<sub>1</sub>) and from brain to plasma (k<sub>2</sub>), and the total volume of distribution (V<sub>T</sub> = K<sub>1</sub>/k<sub>2</sub>).</p><p><strong>Results: </strong>DRE patients but not DSE patients showed significantly higher k<sub>2</sub> values and a trend towards lower V<sub>T</sub> values in several temporal lobe sub-regions located ipsilateral to the epileptic focus as compared to healthy subjects (k<sub>2</sub>: hippocampus: +34%, anterior temporal lobe, medial part: +28%, superior temporal gyrus, posterior part: +21%).</p><p><strong>Conclusions: </strong>[<sup>11</sup>C]Metoclopramide PET can detect a seizure-induced P-gp up-regulation in the epileptic brain. The efflux rate constant k<sub>2</sub> seems to be the most sensitive parameter to measure increased P-gp function with [<sup>11</sup>C]metoclopramide. Our study provides evidence that disease-induced alterations in P-gp expression at the BBB can lead to changes in the distribution of a central nervous system-active drug to the human brain, which could affect the efficacy and/or safety of drugs. [<sup>11</sup>C]Metoclopramide PET may be used to assess or predict the contribution of increased P-gp function to drug resistance and disease pathophysiology in various brain diseases.</p><p><strong>Trial registration: </strong>EudraCT 2019-003137-42. Registered 28 February 2020.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"87"},"PeriodicalIF":5.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active CNS delivery of oxycodone in healthy and endotoxemic pigs. 在健康猪和内毒素中毒猪体内活性中枢神经系统输送羟考酮。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-23 DOI: 10.1186/s12987-024-00583-z
Frida Bällgren, Tilda Bergfast, Aghavni Ginosyan, Jessica Mahajan, Miklós Lipcsey, Margareta Hammarlund-Udenaes, Stina Syvänen, Irena Loryan
{"title":"Active CNS delivery of oxycodone in healthy and endotoxemic pigs.","authors":"Frida Bällgren, Tilda Bergfast, Aghavni Ginosyan, Jessica Mahajan, Miklós Lipcsey, Margareta Hammarlund-Udenaes, Stina Syvänen, Irena Loryan","doi":"10.1186/s12987-024-00583-z","DOIUrl":"10.1186/s12987-024-00583-z","url":null,"abstract":"<p><strong>Background: </strong>The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs.</p><p><strong>Methods: </strong>This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H<sup>+</sup>/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers.</p><p><strong>Results: </strong>Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (K<sub>p,uu,brain</sub>) of 2.5. This supports the hypothesis of the presence of the H<sup>+</sup>/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean K<sub>p,uu,LV</sub> values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean K<sub>p,uu,lumbarCSF</sub> of 1.5. LPS challenge caused a slight decrease in K<sub>p,uu,LV</sub>, while K<sub>p,uu,lumbarCSF</sub> remained unaffected.</p><p><strong>Conclusions: </strong>This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"86"},"PeriodicalIF":5.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant individual variation in cardiac-cycle-linked cerebrospinal fluid production following subarachnoid hemorrhage. 蛛网膜下腔出血后,与心脏周期相关的脑脊液生成量存在显著的个体差异。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-22 DOI: 10.1186/s12987-024-00587-9
Per Kristian Eide, Ragnhild Marie Undseth, Øyvind Gjertsen, Lars Magnus Valnes, Geir Ringstad, Erika Kristina Lindstrøm
{"title":"Significant individual variation in cardiac-cycle-linked cerebrospinal fluid production following subarachnoid hemorrhage.","authors":"Per Kristian Eide, Ragnhild Marie Undseth, Øyvind Gjertsen, Lars Magnus Valnes, Geir Ringstad, Erika Kristina Lindstrøm","doi":"10.1186/s12987-024-00587-9","DOIUrl":"https://doi.org/10.1186/s12987-024-00587-9","url":null,"abstract":"<p><strong>Background: </strong>Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus.</p><p><strong>Methods: </strong>In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ). Within these regions of interest, volumetric CSF flow was determined for every pixel and net CSF flow volume and direction calculated. The presence of acute or chronic hydrocephalus was deemed from ventriculomegaly and need of CSF diversion. For comparison, we included healthy subjects and patients examined for different CSF diseases.</p><p><strong>Results: </strong>Twenty-four SAH patients were enrolled, revealing a heterogeneous array of CSF flow alterations at the Sylvian aqueduct. The cardiac-cycle-linked CSF net flow in Sylvian aqueduct differed from the traditional figures of ventricular CSF production about 0.30-0.40 mL/min. In 15 out of 24 patients (62.5%), net CSF flow was retrograde from the fourth to the third and lateral ventricles, while it was upward at the cranio-cervical junction in 2 out of 2 patients (100%). The diverse CSF flow metrics did not distinguish between individuals with acute or chronic secondary hydrocephalus. In comparison, 4/4 healthy subjects showed antegrade net CSF flow in the Sylvian aqueduct and net upward CSF flow in CCJ. These net CSF flow measures also showed interindividual variability among other patients with CSF diseases.</p><p><strong>Conclusions: </strong>There is considerable inter-individual variation in net CSF flow rates following SAH. Net CSF flow in the Sylvian aqueduct differs markedly from the traditional ventricular CSF production rates of 0.30-0.40 mL/min in SAH patients, but less so in healthy subjects. Furthermore, the cardiac-cycle-linked net CSF flow rates in Sylvian aqueduct and CCJ suggest an important role of extra-ventricular CSF production.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"85"},"PeriodicalIF":5.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated peripheral inflammation is associated with choroid plexus enlargement in independent sporadic amyotrophic lateral sclerosis cohorts. 在独立的散发性肌萎缩侧索硬化症队列中,外周炎症升高与脉络丛扩大有关。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-21 DOI: 10.1186/s12987-024-00586-w
Sujuan Sun, Yujing Chen, Yan Yun, Bing Zhao, Qingguo Ren, Xiaohan Sun, Xiangshui Meng, Chuanzhu Yan, Pengfei Lin, Shuangwu Liu
{"title":"Elevated peripheral inflammation is associated with choroid plexus enlargement in independent sporadic amyotrophic lateral sclerosis cohorts.","authors":"Sujuan Sun, Yujing Chen, Yan Yun, Bing Zhao, Qingguo Ren, Xiaohan Sun, Xiangshui Meng, Chuanzhu Yan, Pengfei Lin, Shuangwu Liu","doi":"10.1186/s12987-024-00586-w","DOIUrl":"10.1186/s12987-024-00586-w","url":null,"abstract":"<p><strong>Background: </strong>Using neuroimaging techniques, growing evidence has suggested that the choroid plexus (CP) volume is enlarged in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Notably, the CP has been suggested to play an important role in inflammation-induced CNS damage under disease conditions. However, to our knowledge, no study has investigated the relationships between peripheral inflammation and CP volume in sporadic ALS patients. Thus, in this study, we aimed to verify CP enlargement and explore its association with peripheral inflammation in vivo in independent ALS cohorts.</p><p><strong>Methods: </strong>Based on structural MRI data, CP volume was measured using Gaussian mixture models and further manually corrected in two independent cohorts of sporadic ALS patients and healthy controls (HCs). Serum inflammatory protein levels were measured using a novel high-sensitivity Olink proximity extension assay (PEA) technique. Xtreme gradient boosting (XGBoost) was used to explore the contribution of peripheral inflammatory factors to CP enlargement. Then, partial correlation analyses were performed.</p><p><strong>Results: </strong>CP volumes were significantly higher in ALS patients than in HCs in the independent cohorts. Compared with HCs, serum levels of CRP, IL-6, CXCL10, and 35 other inflammatory factors were significantly increased in ALS patients. Using the XGBoost approach, we established a model-based importance of features, and the top three predictors of CP volume in ALS patients were CRP, IL-6, and CXCL10 (with gains of 0.24, 0.18, and 0.15, respectively). Correlation analyses revealed that CRP, IL-6, and CXCL10 were significantly associated with CP volume in ALS patients (r = 0.462 ∼ 0.636, p < 0.001).</p><p><strong>Conclusion: </strong>Our study is the first to reveal a consistent and replicable contribution of peripheral inflammation to CP enlargement in vivo in sporadic ALS patients. Given that CP enlargement has been recently detected in other brain diseases, these findings should consider extending to other disease conditions with a peripheral inflammatory component.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"83"},"PeriodicalIF":5.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-independent acquisition proteomic analysis of the brain microvasculature in Alzheimer's disease identifies major pathways of dysfunction and upregulation of cytoprotective responses. 对阿尔茨海默氏症脑微血管的数据独立采集蛋白质组分析确定了功能障碍和细胞保护反应上调的主要途径。
IF 5.9 1区 医学
Fluids and Barriers of the CNS Pub Date : 2024-10-21 DOI: 10.1186/s12987-024-00581-1
Michelle A Erickson, Richard S Johnson, Mamatha Damodarasamy, Michael J MacCoss, C Dirk Keene, William A Banks, May J Reed
{"title":"Data-independent acquisition proteomic analysis of the brain microvasculature in Alzheimer's disease identifies major pathways of dysfunction and upregulation of cytoprotective responses.","authors":"Michelle A Erickson, Richard S Johnson, Mamatha Damodarasamy, Michael J MacCoss, C Dirk Keene, William A Banks, May J Reed","doi":"10.1186/s12987-024-00581-1","DOIUrl":"10.1186/s12987-024-00581-1","url":null,"abstract":"<p><p>Brain microvascular dysfunction is an important feature of Alzheimer's disease (AD). To better understand the brain microvascular molecular signatures of AD, we processed and analyzed isolated human brain microvessels by data-independent acquisition liquid chromatography with tandem mass spectrometry (DIA LC-MS/MS) to generate a quantitative dataset at the peptide and protein level. Brain microvessels were isolated from parietal cortex grey matter using protocols that preserve viability for downstream functional studies. Our cohort included 23 subjects with clinical and neuropathologic concordance for Alzheimer's disease, and 21 age-matched controls. In our analysis, we identified 168 proteins whose abundance was significantly increased, and no proteins that were significantly decreased in AD. The most highly increased proteins included amyloid beta, tau, midkine, SPARC related modular calcium binding 1 (SMOC1), and fatty acid binding protein 7 (FABP7). Additionally, Gene Ontology (GO) enrichment analysis identified the enrichment of increased proteins involved in cellular detoxification and antioxidative responses. A systematic evaluation of protein functions using the UniProt database identified groupings into common functional themes including the regulation of cellular proliferation, cellular differentiation and survival, inflammation, extracellular matrix, cell stress responses, metabolism, coagulation and heme breakdown, protein degradation, cytoskeleton, subcellular trafficking, cell motility, and cell signaling. This suggests that AD brain microvessels exist in a stressed state of increased energy demand, and mount a compensatory response to ongoing oxidative and cellular damage that is associated with AD. We also used public RNAseq databases to identify cell-type enriched genes that were detected at the protein level and found no changes in abundance of these proteins between control and AD groups, indicating that changes in cellular composition of the isolated microvessels were minimal between AD and no-AD groups. Using public data, we additionally found that under half of the proteins that were significantly increased in AD microvessels had concordant changes in brain microvascular mRNA, implying substantial discordance between gene and protein levels. Together, our results offer novel insights into the molecular underpinnings of brain microvascular dysfunction in AD.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"84"},"PeriodicalIF":5.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信