在健康猪和内毒素中毒猪体内活性中枢神经系统输送羟考酮。

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Frida Bällgren, Tilda Bergfast, Aghavni Ginosyan, Jessica Mahajan, Miklós Lipcsey, Margareta Hammarlund-Udenaes, Stina Syvänen, Irena Loryan
{"title":"在健康猪和内毒素中毒猪体内活性中枢神经系统输送羟考酮。","authors":"Frida Bällgren, Tilda Bergfast, Aghavni Ginosyan, Jessica Mahajan, Miklós Lipcsey, Margareta Hammarlund-Udenaes, Stina Syvänen, Irena Loryan","doi":"10.1186/s12987-024-00583-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs.</p><p><strong>Methods: </strong>This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H<sup>+</sup>/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers.</p><p><strong>Results: </strong>Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (K<sub>p,uu,brain</sub>) of 2.5. This supports the hypothesis of the presence of the H<sup>+</sup>/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean K<sub>p,uu,LV</sub> values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean K<sub>p,uu,lumbarCSF</sub> of 1.5. LPS challenge caused a slight decrease in K<sub>p,uu,LV</sub>, while K<sub>p,uu,lumbarCSF</sub> remained unaffected.</p><p><strong>Conclusions: </strong>This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"86"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Active CNS delivery of oxycodone in healthy and endotoxemic pigs.\",\"authors\":\"Frida Bällgren, Tilda Bergfast, Aghavni Ginosyan, Jessica Mahajan, Miklós Lipcsey, Margareta Hammarlund-Udenaes, Stina Syvänen, Irena Loryan\",\"doi\":\"10.1186/s12987-024-00583-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs.</p><p><strong>Methods: </strong>This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H<sup>+</sup>/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers.</p><p><strong>Results: </strong>Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (K<sub>p,uu,brain</sub>) of 2.5. This supports the hypothesis of the presence of the H<sup>+</sup>/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean K<sub>p,uu,LV</sub> values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean K<sub>p,uu,lumbarCSF</sub> of 1.5. LPS challenge caused a slight decrease in K<sub>p,uu,LV</sub>, while K<sub>p,uu,lumbarCSF</sub> remained unaffected.</p><p><strong>Conclusions: </strong>This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"86\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00583-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00583-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究背景本研究的主要目的是通过检测猪脑中羟考酮的浓度,加深我们对啮齿类动物以外的更高物种脑屏障活性药物摄取的了解:方法:在健康和内毒素中毒条件下进行微透析研究,以加深对假定质子偶联有机阳离子(H+/OC)载体介导的中枢神经系统(CNS)药物输送在健康和病理情况下的物种间转化的理解,并促进将其推广到人类,以改善患者的中枢神经系统药物治疗。此外,我们还试图评估腰部脑脊液(CSF)暴露读数作为大脑非结合间质(ISF)浓度替代物的功效。通过同时监测同一只动物在健康和脂多糖(LPS)诱发炎症状态下血液、额叶皮质区、侧脑室和腰椎鞘内空间中的非结合浓度,我们在绘制羟考酮跨中枢神经系统屏障转运图时获得了极高的时空分辨率:我们的研究结果提供了新的证据,证明与血液相比,脑ISF中的非结合羟考酮浓度更高,非结合脑与血浆浓度比(Kp,uu,brain)为2.5。这支持了猪血脑屏障(BBB)中存在 H+/OC 拮抗剂系统的假设。尽管生理上发生了重大变化(反映在猪连续器官衰竭评估 pSOFA 分数上),但在静脉注射 4 µg/kg/h 来自大肠杆菌 (O111:B4) 的 LPS 三小时后,羟考酮的血药浓度及其通过 BBB 的活性净摄取量几乎保持不变。平均 Kp、uu、LV 值表明,健康猪和内毒素中毒猪在血液-脑脊液屏障上也有活性吸收。腰部 CSF 浓度在实验期间显示出最小的个体间差异,平均 Kp,uu,lumbarCSF 为 1.5。LPS挑战导致Kp,uu,LV略有下降,而Kp,uu,腰部CSF不受影响:这项研究加深了我们对羟考酮在健康和炎症条件下的药代动力学和中枢神经系统药物输送的理解,为将这些发现应用于临床提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active CNS delivery of oxycodone in healthy and endotoxemic pigs.

Background: The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs.

Methods: This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers.

Results: Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected.

Conclusions: This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信