蛛网膜下腔出血后,与心脏周期相关的脑脊液生成量存在显著的个体差异。

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Per Kristian Eide, Ragnhild Marie Undseth, Øyvind Gjertsen, Lars Magnus Valnes, Geir Ringstad, Erika Kristina Lindstrøm
{"title":"蛛网膜下腔出血后,与心脏周期相关的脑脊液生成量存在显著的个体差异。","authors":"Per Kristian Eide, Ragnhild Marie Undseth, Øyvind Gjertsen, Lars Magnus Valnes, Geir Ringstad, Erika Kristina Lindstrøm","doi":"10.1186/s12987-024-00587-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus.</p><p><strong>Methods: </strong>In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ). Within these regions of interest, volumetric CSF flow was determined for every pixel and net CSF flow volume and direction calculated. The presence of acute or chronic hydrocephalus was deemed from ventriculomegaly and need of CSF diversion. For comparison, we included healthy subjects and patients examined for different CSF diseases.</p><p><strong>Results: </strong>Twenty-four SAH patients were enrolled, revealing a heterogeneous array of CSF flow alterations at the Sylvian aqueduct. The cardiac-cycle-linked CSF net flow in Sylvian aqueduct differed from the traditional figures of ventricular CSF production about 0.30-0.40 mL/min. In 15 out of 24 patients (62.5%), net CSF flow was retrograde from the fourth to the third and lateral ventricles, while it was upward at the cranio-cervical junction in 2 out of 2 patients (100%). The diverse CSF flow metrics did not distinguish between individuals with acute or chronic secondary hydrocephalus. In comparison, 4/4 healthy subjects showed antegrade net CSF flow in the Sylvian aqueduct and net upward CSF flow in CCJ. These net CSF flow measures also showed interindividual variability among other patients with CSF diseases.</p><p><strong>Conclusions: </strong>There is considerable inter-individual variation in net CSF flow rates following SAH. Net CSF flow in the Sylvian aqueduct differs markedly from the traditional ventricular CSF production rates of 0.30-0.40 mL/min in SAH patients, but less so in healthy subjects. Furthermore, the cardiac-cycle-linked net CSF flow rates in Sylvian aqueduct and CCJ suggest an important role of extra-ventricular CSF production.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"85"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Significant individual variation in cardiac-cycle-linked cerebrospinal fluid production following subarachnoid hemorrhage.\",\"authors\":\"Per Kristian Eide, Ragnhild Marie Undseth, Øyvind Gjertsen, Lars Magnus Valnes, Geir Ringstad, Erika Kristina Lindstrøm\",\"doi\":\"10.1186/s12987-024-00587-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus.</p><p><strong>Methods: </strong>In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ). Within these regions of interest, volumetric CSF flow was determined for every pixel and net CSF flow volume and direction calculated. The presence of acute or chronic hydrocephalus was deemed from ventriculomegaly and need of CSF diversion. For comparison, we included healthy subjects and patients examined for different CSF diseases.</p><p><strong>Results: </strong>Twenty-four SAH patients were enrolled, revealing a heterogeneous array of CSF flow alterations at the Sylvian aqueduct. The cardiac-cycle-linked CSF net flow in Sylvian aqueduct differed from the traditional figures of ventricular CSF production about 0.30-0.40 mL/min. In 15 out of 24 patients (62.5%), net CSF flow was retrograde from the fourth to the third and lateral ventricles, while it was upward at the cranio-cervical junction in 2 out of 2 patients (100%). The diverse CSF flow metrics did not distinguish between individuals with acute or chronic secondary hydrocephalus. In comparison, 4/4 healthy subjects showed antegrade net CSF flow in the Sylvian aqueduct and net upward CSF flow in CCJ. These net CSF flow measures also showed interindividual variability among other patients with CSF diseases.</p><p><strong>Conclusions: </strong>There is considerable inter-individual variation in net CSF flow rates following SAH. Net CSF flow in the Sylvian aqueduct differs markedly from the traditional ventricular CSF production rates of 0.30-0.40 mL/min in SAH patients, but less so in healthy subjects. Furthermore, the cardiac-cycle-linked net CSF flow rates in Sylvian aqueduct and CCJ suggest an important role of extra-ventricular CSF production.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"85\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00587-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00587-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:自发性蛛网膜下腔出血(SAH)通常会导致脑脊液(CSF)流改变和继发性脑积水,但人们对这些现象背后的机制仍然知之甚少。本研究旨在阐明 SAH 对个体 CSF 流动模式的影响及其与继发性脑积水的关联:方法:在 SAH 患者中,使用心脏门控相位对比磁共振成像(PC-MRI)评估 Sylvian导水管和颅颈交界处(CCJ)的 CSF 流量变化。在这些感兴趣的区域内,每个像素的 CSF 流量都会被测定,并计算出 CSF 净流量和方向。根据脑室肿大程度和 CSF 分流需要判断是否存在急性或慢性脑积水。为了进行比较,我们纳入了健康受试者和因不同 CSF 疾病接受检查的患者:结果:24 名 SAH 患者参与了研究,结果显示,Sylvian导水管处的 CSF 流发生了不同程度的改变。西尔维亚导水管中与心动周期相关的 CSF 净流量与传统的心室 CSF 生成量相差约 0.30-0.40 mL/min。24 名患者中有 15 人(62.5%)的 CSF 净流从第四脑室逆流至第三脑室和侧脑室,而 2 名患者中有 2 人(100%)的 CSF 净流在颅颈交界处向上流动。不同的脑脊液流动指标无法区分急性或慢性继发性脑积水患者。相比之下,4/4 的健康受试者在 Sylvian导水管中显示出前向的 CSF 净流量,在 CCJ 中显示出向上的 CSF 净流量。在其他脑脊液疾病患者中,这些脑脊液净流量测量值也显示出个体间的差异性:结论:SAH 后 CSF 净流量在个体间存在相当大的差异。SAH患者Sylvian导水管中的CSF净流量与传统的心室CSF生成率(0.30-0.40 mL/min)有明显差异,但在健康受试者中差异较小。此外,Sylvian导水管和CCJ中与心动周期相关的CSF净流量表明,心室外CSF生成起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significant individual variation in cardiac-cycle-linked cerebrospinal fluid production following subarachnoid hemorrhage.

Background: Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus.

Methods: In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ). Within these regions of interest, volumetric CSF flow was determined for every pixel and net CSF flow volume and direction calculated. The presence of acute or chronic hydrocephalus was deemed from ventriculomegaly and need of CSF diversion. For comparison, we included healthy subjects and patients examined for different CSF diseases.

Results: Twenty-four SAH patients were enrolled, revealing a heterogeneous array of CSF flow alterations at the Sylvian aqueduct. The cardiac-cycle-linked CSF net flow in Sylvian aqueduct differed from the traditional figures of ventricular CSF production about 0.30-0.40 mL/min. In 15 out of 24 patients (62.5%), net CSF flow was retrograde from the fourth to the third and lateral ventricles, while it was upward at the cranio-cervical junction in 2 out of 2 patients (100%). The diverse CSF flow metrics did not distinguish between individuals with acute or chronic secondary hydrocephalus. In comparison, 4/4 healthy subjects showed antegrade net CSF flow in the Sylvian aqueduct and net upward CSF flow in CCJ. These net CSF flow measures also showed interindividual variability among other patients with CSF diseases.

Conclusions: There is considerable inter-individual variation in net CSF flow rates following SAH. Net CSF flow in the Sylvian aqueduct differs markedly from the traditional ventricular CSF production rates of 0.30-0.40 mL/min in SAH patients, but less so in healthy subjects. Furthermore, the cardiac-cycle-linked net CSF flow rates in Sylvian aqueduct and CCJ suggest an important role of extra-ventricular CSF production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信