FilomatPub Date : 2023-01-01DOI: 10.2298/fil2302363k
Mohammed Khalladi, Marko Kostic, Abdelkader Rahmani, Daniel Velinov
{"title":"(ω,c)-almost periodic type functions and applications","authors":"Mohammed Khalladi, Marko Kostic, Abdelkader Rahmani, Daniel Velinov","doi":"10.2298/fil2302363k","DOIUrl":"https://doi.org/10.2298/fil2302363k","url":null,"abstract":"In this paper, we introduce several various classes of (?, c)-almost periodic type functions and their Stepanov generalizations. We also consider the corresponding classes of (?, c)-almost periodic type functions depending on two variables and related composition principles. We provide several illustrative examples and applications to the abstract Volterra integro-differential equations in Banach spaces.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2308347l
Yixing Liang, Z. Fan, Gang Li
{"title":"Finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation","authors":"Yixing Liang, Z. Fan, Gang Li","doi":"10.2298/fil2308347l","DOIUrl":"https://doi.org/10.2298/fil2308347l","url":null,"abstract":"In Hilbert space, the finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation is researched. We make assumptions about the parameters in the equation and suppose that the linear equation associated with the abstract semilinear fractional relaxation equation is approximately controllable. We apply the variational method, the resolvent theory and the fixed point trick to demonstrate the finite-dimensional exact controllability of the abstract semilinear equation. An application is given in the last paper to testify our results.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68273048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2301193m
K. Mahfoudhi, B. Saadaoui, V. Rakočević
{"title":"Generalized Drazin-meromorphic pseudospectrum for multivalued linear relation","authors":"K. Mahfoudhi, B. Saadaoui, V. Rakočević","doi":"10.2298/fil2301193m","DOIUrl":"https://doi.org/10.2298/fil2301193m","url":null,"abstract":"In this paperwe investigate the spectrum and the Drazin spectrum and their pseudo spectral analogues, for linear relations between Banach spaces and corresponding spectra, the generalized Drazinmeromorphic pseudospectrum. More specifically, the generalized Drazin-meromorphic pseudospectrum for a linear relations on a Banach space is studied. We also make several observations about the level set of the generalized Drazin-meromorphic pseudospectrum of linear relations. Furthermore, it is shown that pseudospectrum has no isolated points, has a finite number of connected components and each component contains an element from the generalized Drazin-meromorphic spectrum.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68266689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2302417g
Hong-Fang Guo, F. Lü, W. Lü
{"title":"A study on entire functions of hyper-order sharing a finite set with their high-order difference operators","authors":"Hong-Fang Guo, F. Lü, W. Lü","doi":"10.2298/fil2302417g","DOIUrl":"https://doi.org/10.2298/fil2302417g","url":null,"abstract":"In this paper, due to the Borel lemma and Clunie lemma, we will deduce the relationship between an entire function f of hyper-order less than 1 and its n-th difference operator ?nc f (z) if they share a finite set and f has a Borel exceptional value 0, where the set consists of two entire functions of smaller orders. Moreover, the exact form of f is given and an example is provided to show the sharpness of the condition.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68266754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2303675i
M. Ighachane, M. Akkouchi
{"title":"Further refinement of Young’s type inequalities and its reversed using the Kantorovich constants","authors":"M. Ighachane, M. Akkouchi","doi":"10.2298/fil2303675i","DOIUrl":"https://doi.org/10.2298/fil2303675i","url":null,"abstract":"In this paper, we show a multiple-term refinement of Young?s type inequality and its reverse via the Kantorovich constants, which extends and unifies two recent and important results due to L. Nasiri et al. (Result. Math (74), 2019), and C. Yang et al. (Journal. Math. Inequalities, (14), 2020). An application of these scalars results we give a multiple-term refinement of Young?s type inequalities for operators, Hilbert-Schmidt norms, traces and the unitarily invariant norms.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68267566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2303833g
B. J. González, E. Negrín
{"title":"Operators with complex Gaussian kernels: Asymptotic behaviours","authors":"B. J. González, E. Negrín","doi":"10.2298/fil2303833g","DOIUrl":"https://doi.org/10.2298/fil2303833g","url":null,"abstract":"In this paper we derive Abelian theorems for the operators with complex Gaussian kernels. Specifically, we establish some results in which known the behaviour of the function and its domain variable approaches to ?? or +? is used to infer the asymptotic behaviour of the transform as its domain variable approaches to +? or ??. For this purpose we use a formula concerning the computation of potential functions by means of these operators with complex Gaussian kernels. This formula allows us to analyse the asymptotic behaviour of these operators in both cases: when the variable approaches to +? or ??. Our results include systematically the noncentered and centered cases of these operators. Here we analyse the Gauss-Weierstrass semigroup on R as a particular case. We also point out Abelian theorems for other kinds of operators which have been studied in several papers.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68267801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2303891c
Slim Chelly
{"title":"Stability of relative essential spectra involving relative demicompactness concept in Banach subalgebra","authors":"Slim Chelly","doi":"10.2298/fil2303891c","DOIUrl":"https://doi.org/10.2298/fil2303891c","url":null,"abstract":"This paper develops the notion of relative demicompact elements of an algebra with respect to a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces. Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in [6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key in the characterization of the weyl spectrum of elements affiliated with B.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68267953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2303905o
Gözde Özkan Tükel, B. Şahin, Tunahan Turhan
{"title":"Certain curves along Riemannian submersions","authors":"Gözde Özkan Tükel, B. Şahin, Tunahan Turhan","doi":"10.2298/fil2303905o","DOIUrl":"https://doi.org/10.2298/fil2303905o","url":null,"abstract":"In this paper, when a given curve on the total manifold of a Riemannian submersion is transferred to the base manifold, the character of the corresponding curve is examined. First, the case of a Frenet curve on the total manifold being a Frenet curve on the base manifold along a Riemannian submersion is investigated. Then, the condition that a circle on the total manifold (respectively a helix) is a circle (respectively, a helix) or a geodesic on the base manifold along a Riemannian submersion is obtained. We also investigate the curvatures of the original curve on the total manifold and the corresponding curve on the base manifold in terms of Riemannian submersions.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"107 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68268016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2305319a
S. Abbas, A. Arara, M. Benchohra
{"title":"Existence and global stability results for Volterra type fractional Hadamard-Stieltjes partial integral equations","authors":"S. Abbas, A. Arara, M. Benchohra","doi":"10.2298/fil2305319a","DOIUrl":"https://doi.org/10.2298/fil2305319a","url":null,"abstract":"This paper deals with the existence and global stability of solutions of a new class of Volterra partial integral equations of Hadamard-Stieltjes fractional order.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68268755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FilomatPub Date : 2023-01-01DOI: 10.2298/fil2304291a
H. Aslan
{"title":"Approximation by matrix means on hexagonal domains in the generalized Hölder metric","authors":"H. Aslan","doi":"10.2298/fil2304291a","DOIUrl":"https://doi.org/10.2298/fil2304291a","url":null,"abstract":"In this paper the degree of approximation of the function f, which is periodic with respect to the hexagon lattice by matrix means T(A)n(f) of its hexagonal Fourier series in the generalized H?lder metric, where A is a lower triangular infinite matrix of nonnegative real numbers with nonincreasing row is estimated.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68268852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}