抽象半线性分数阶复合松弛方程的有限维精确可控性

Pub Date : 2023-01-01 DOI:10.2298/fil2308347l
Yixing Liang, Z. Fan, Gang Li
{"title":"抽象半线性分数阶复合松弛方程的有限维精确可控性","authors":"Yixing Liang, Z. Fan, Gang Li","doi":"10.2298/fil2308347l","DOIUrl":null,"url":null,"abstract":"In Hilbert space, the finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation is researched. We make assumptions about the parameters in the equation and suppose that the linear equation associated with the abstract semilinear fractional relaxation equation is approximately controllable. We apply the variational method, the resolvent theory and the fixed point trick to demonstrate the finite-dimensional exact controllability of the abstract semilinear equation. An application is given in the last paper to testify our results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation\",\"authors\":\"Yixing Liang, Z. Fan, Gang Li\",\"doi\":\"10.2298/fil2308347l\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Hilbert space, the finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation is researched. We make assumptions about the parameters in the equation and suppose that the linear equation associated with the abstract semilinear fractional relaxation equation is approximately controllable. We apply the variational method, the resolvent theory and the fixed point trick to demonstrate the finite-dimensional exact controllability of the abstract semilinear equation. An application is given in the last paper to testify our results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2308347l\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2308347l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Hilbert空间中,研究了一类抽象半线性分数阶复合松弛方程的有限维精确可控性。我们对方程中的参数作了假设,并假设与抽象半线性分数阶松弛方程相关的线性方程是近似可控的。本文应用变分方法、解耦理论和不动点技巧证明了抽象半线性方程的有限维精确可控性。最后给出了一个应用来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation
In Hilbert space, the finite-dimensional exact controllability of an abstract semilinear fractional composite relaxation equation is researched. We make assumptions about the parameters in the equation and suppose that the linear equation associated with the abstract semilinear fractional relaxation equation is approximately controllable. We apply the variational method, the resolvent theory and the fixed point trick to demonstrate the finite-dimensional exact controllability of the abstract semilinear equation. An application is given in the last paper to testify our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信