沿黎曼淹没的某些曲线

Pub Date : 2023-01-01 DOI:10.2298/fil2303905o
Gözde Özkan Tükel, B. Şahin, Tunahan Turhan
{"title":"沿黎曼淹没的某些曲线","authors":"Gözde Özkan Tükel, B. Şahin, Tunahan Turhan","doi":"10.2298/fil2303905o","DOIUrl":null,"url":null,"abstract":"In this paper, when a given curve on the total manifold of a Riemannian submersion is transferred to the base manifold, the character of the corresponding curve is examined. First, the case of a Frenet curve on the total manifold being a Frenet curve on the base manifold along a Riemannian submersion is investigated. Then, the condition that a circle on the total manifold (respectively a helix) is a circle (respectively, a helix) or a geodesic on the base manifold along a Riemannian submersion is obtained. We also investigate the curvatures of the original curve on the total manifold and the corresponding curve on the base manifold in terms of Riemannian submersions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certain curves along Riemannian submersions\",\"authors\":\"Gözde Özkan Tükel, B. Şahin, Tunahan Turhan\",\"doi\":\"10.2298/fil2303905o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, when a given curve on the total manifold of a Riemannian submersion is transferred to the base manifold, the character of the corresponding curve is examined. First, the case of a Frenet curve on the total manifold being a Frenet curve on the base manifold along a Riemannian submersion is investigated. Then, the condition that a circle on the total manifold (respectively a helix) is a circle (respectively, a helix) or a geodesic on the base manifold along a Riemannian submersion is obtained. We also investigate the curvatures of the original curve on the total manifold and the corresponding curve on the base manifold in terms of Riemannian submersions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2303905o\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303905o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了将黎曼浸没总流形上的给定曲线转换为基流形时,相应曲线的性质。首先,研究了总流形上的Frenet曲线是基流形上沿黎曼浸没的Frenet曲线的情况。然后,得到了总流形(分别为螺旋)上的圆是基流形上沿黎曼浸没的圆(分别为螺旋)或测地线的条件。我们还研究了原始曲线在总流形上的曲率和相应曲线在基流形上的黎曼淹没的曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Certain curves along Riemannian submersions
In this paper, when a given curve on the total manifold of a Riemannian submersion is transferred to the base manifold, the character of the corresponding curve is examined. First, the case of a Frenet curve on the total manifold being a Frenet curve on the base manifold along a Riemannian submersion is investigated. Then, the condition that a circle on the total manifold (respectively a helix) is a circle (respectively, a helix) or a geodesic on the base manifold along a Riemannian submersion is obtained. We also investigate the curvatures of the original curve on the total manifold and the corresponding curve on the base manifold in terms of Riemannian submersions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信