具有复高斯核的算子:渐近行为

Pub Date : 2023-01-01 DOI:10.2298/fil2303833g
B. J. González, E. Negrín
{"title":"具有复高斯核的算子:渐近行为","authors":"B. J. González, E. Negrín","doi":"10.2298/fil2303833g","DOIUrl":null,"url":null,"abstract":"In this paper we derive Abelian theorems for the operators with complex Gaussian kernels. Specifically, we establish some results in which known the behaviour of the function and its domain variable approaches to ?? or +? is used to infer the asymptotic behaviour of the transform as its domain variable approaches to +? or ??. For this purpose we use a formula concerning the computation of potential functions by means of these operators with complex Gaussian kernels. This formula allows us to analyse the asymptotic behaviour of these operators in both cases: when the variable approaches to +? or ??. Our results include systematically the noncentered and centered cases of these operators. Here we analyse the Gauss-Weierstrass semigroup on R as a particular case. We also point out Abelian theorems for other kinds of operators which have been studied in several papers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operators with complex Gaussian kernels: Asymptotic behaviours\",\"authors\":\"B. J. González, E. Negrín\",\"doi\":\"10.2298/fil2303833g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive Abelian theorems for the operators with complex Gaussian kernels. Specifically, we establish some results in which known the behaviour of the function and its domain variable approaches to ?? or +? is used to infer the asymptotic behaviour of the transform as its domain variable approaches to +? or ??. For this purpose we use a formula concerning the computation of potential functions by means of these operators with complex Gaussian kernels. This formula allows us to analyse the asymptotic behaviour of these operators in both cases: when the variable approaches to +? or ??. Our results include systematically the noncentered and centered cases of these operators. Here we analyse the Gauss-Weierstrass semigroup on R as a particular case. We also point out Abelian theorems for other kinds of operators which have been studied in several papers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2303833g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303833g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文导出了复高斯核算子的阿贝尔定理。具体来说,我们建立了一些结果,其中已知函数的行为及其域变量接近?? ?还是+ ?是用来推断变换的渐近行为,因为它的域变量接近+?还是? ?。为了达到这个目的,我们使用了一个关于用这些复高斯核算子计算势函数的公式。这个公式允许我们分析两种情况下这些算子的渐近行为:当变量接近+?还是? ?。我们的结果系统地包括了这些算子的非中心和中心情况。这里我们分析R上的Gauss-Weierstrass半群作为一个特例。我们还指出了其他类型算子的阿贝尔定理,这些定理已经在几篇论文中得到了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Operators with complex Gaussian kernels: Asymptotic behaviours
In this paper we derive Abelian theorems for the operators with complex Gaussian kernels. Specifically, we establish some results in which known the behaviour of the function and its domain variable approaches to ?? or +? is used to infer the asymptotic behaviour of the transform as its domain variable approaches to +? or ??. For this purpose we use a formula concerning the computation of potential functions by means of these operators with complex Gaussian kernels. This formula allows us to analyse the asymptotic behaviour of these operators in both cases: when the variable approaches to +? or ??. Our results include systematically the noncentered and centered cases of these operators. Here we analyse the Gauss-Weierstrass semigroup on R as a particular case. We also point out Abelian theorems for other kinds of operators which have been studied in several papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信