Banach子代数中涉及相对半紧性概念的相对本质谱的稳定性

Pub Date : 2023-01-01 DOI:10.2298/fil2303891c
Slim Chelly
{"title":"Banach子代数中涉及相对半紧性概念的相对本质谱的稳定性","authors":"Slim Chelly","doi":"10.2298/fil2303891c","DOIUrl":null,"url":null,"abstract":"This paper develops the notion of relative demicompact elements of an algebra with respect to a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces. Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in [6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key in the characterization of the weyl spectrum of elements affiliated with B.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of relative essential spectra involving relative demicompactness concept in Banach subalgebra\",\"authors\":\"Slim Chelly\",\"doi\":\"10.2298/fil2303891c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the notion of relative demicompact elements of an algebra with respect to a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces. Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in [6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key in the characterization of the weyl spectrum of elements affiliated with B.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2303891c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303891c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为作用于巴拿赫空间上的相对半紧线性算子的推广,本文提出了关于巴拿赫子代数的相对半紧元的概念。利用这一新颖的概念,我们建立了一类新的Fredholm摄动关于给定的Banach子代数B,它包含了它的非本质理想kB和[6]中建议的左Fredholm摄动集。发达的Fredholm微扰显示了B的双面封闭理想,这是表征与B相关的元素的weyl谱的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability of relative essential spectra involving relative demicompactness concept in Banach subalgebra
This paper develops the notion of relative demicompact elements of an algebra with respect to a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces. Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in [6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key in the characterization of the weyl spectrum of elements affiliated with B.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信