Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)最新文献

筛选
英文 中文
A Differential Equation Based Model of Cell and Cytokine Activation Influenced by Glucose Dynamics and Elevated Cortisol Levels Due to Aging 基于微分方程的细胞和细胞因子激活模型受葡萄糖动力学和衰老引起的皮质醇水平升高的影响
B. M. Quintela, Thaís S. Marins, S. Garan, Elliott K. Suen, Kian Talaei, Nuno R. B. Martins, Julia R. Jahansooz, Walter Piszker
{"title":"A Differential Equation Based Model of Cell and Cytokine Activation Influenced by Glucose Dynamics and Elevated Cortisol Levels Due to Aging","authors":"B. M. Quintela, Thaís S. Marins, S. Garan, Elliott K. Suen, Kian Talaei, Nuno R. B. Martins, Julia R. Jahansooz, Walter Piszker","doi":"10.5753/sbcas.2023.229512","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229512","url":null,"abstract":"Immunosenescence refers to the alterations in the immune system that occur due to the aging process, which increases susceptibility to diseases and reduces vaccine efficacy. Consequently, understanding the impact of aging on the immune system is crucial for simulating the different ways in which it can be challenged, thereby increasing life expectancy and quality of life. This study combines two mathematical models to understand how cortisol affects and is affected by the glucose uptake and the proand anti-inflammatory cytokines under infection. Cortisol concentration follows a diurnal rhythm and increases with glucose intake. The model simulates the influence of cortisol on the immune response, specifically through cytokine regulation.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129751180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconhecimento de comandos de voz com e sem disartria usando extração de características da fala MFCC e algoritmos de aprendizagem de máquina 使用MFCC语音特征提取和机器学习算法识别有和没有构音障碍的语音命令
Jordana Seixas, Ailton Leite, Rodrigo de Paula, Sérgio Murilo Maciel Fernandes
{"title":"Reconhecimento de comandos de voz com e sem disartria usando extração de características da fala MFCC e algoritmos de aprendizagem de máquina","authors":"Jordana Seixas, Ailton Leite, Rodrigo de Paula, Sérgio Murilo Maciel Fernandes","doi":"10.5753/sbcas.2023.229708","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229708","url":null,"abstract":"A fala disártrica está entre os problemas para articular e pronunciar bem as palavras devido aos danos no sistema neurológico responsável pela fala. Este estudo investiga se os classificadores de aprendizagem de máquina reconhecem quais palavras as pessoas com e sem disartria falam, aplicando uma técnica de extração de características da fala chamada MFCC (Mel Frequency Cepstral Coefficients). Os classificadores Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF) e KNearest Neighbor (KNN) foram testados. O conjunto de dados UASpeech foi usado nos modelos, contendo falantes com e sem disartria. Os resultados mostraram bom desempenho com acurácia média para KNN (98,5%), ANN (95%), RF (91,8%) e SVM (89,5%).","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127414073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex estimation on panoramic dental radiographs: A methodological approach 全景式牙科x光片性别估计:一种方法学方法
Ana Beatriz Hougaz, David Lima, Bernardo Peters, P. Cury, Luciano Oliveira
{"title":"Sex estimation on panoramic dental radiographs: A methodological approach","authors":"Ana Beatriz Hougaz, David Lima, Bernardo Peters, P. Cury, Luciano Oliveira","doi":"10.5753/sbcas.2023.229563","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229563","url":null,"abstract":"Estimating sex using tooth radiographs requires knowledge of a comprehensive spectrum of maxillar anatomy, which ultimately demands specialization on the anatomical structures in the oral cavity. In this paper, we propose a more effective methodological study than others present in the literature for the problem of automatic sex estimation. Our methodology uses the largest publicly available data set in the literature, raises statistical significance in the performance assessment, and explains which part of the images influences the classification. Our findings showed that although EfficientNetV2-Large reached an average F1-score of 91,43% +- 0,67, an EfficientNet-B0 could be more beneficial with a very close F1-score and a much lighter architecture.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126452367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toolbox for vessel X-ray angiography images simulation 工具箱的血管x射线血管造影图像模拟
Gabriela Copetti Maccagnan, Jean Schmith, Marcia Santos, R. M. D. Figueiredo
{"title":"Toolbox for vessel X-ray angiography images simulation","authors":"Gabriela Copetti Maccagnan, Jean Schmith, Marcia Santos, R. M. D. Figueiredo","doi":"10.5753/sbcas.2023.229439","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229439","url":null,"abstract":"In recent years, automatic computer techniques have been proven to be a great tool for the rapid detection and disease diagnosis. The core of those diagnostic systems are usually artificial intelligent algorithms like convolutional neural networks, in which thousands of images are needed for training. However, the available datasets of biomedical images, specially for X-ray angiography, are scarce. Therefore, we propose a toolbox for X-ray angiography images simulation to increase the number of available images as an alternative to data augmentation method for training artificial intelligence algorithms. The toolbox was developed with a set of functions to simulate complex vessel structures, as well as stenosis and aneurysms, in X-ray angiography images.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133403432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predição de lesões celulares em imagens de citologia convencional usando redes neurais convolucionais 使用卷积神经网络预测常规细胞学图像中的细胞损伤
Lucas Freitas, Débora N. Diniz, M. F. Souza, C. M. Carneiro, Daniela M. Ushizima, Fátima N. S. de Medeiros, A. Bianchi
{"title":"Predição de lesões celulares em imagens de citologia convencional usando redes neurais convolucionais","authors":"Lucas Freitas, Débora N. Diniz, M. F. Souza, C. M. Carneiro, Daniela M. Ushizima, Fátima N. S. de Medeiros, A. Bianchi","doi":"10.5753/sbcas.2023.229938","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229938","url":null,"abstract":"Este artigo apresenta uma nova metodologia baseada em aprendizado profundo para detectar lesões cervicais em amostras de exame de Papanicolau. O modelo proposto utiliza informações de localização do núcleo e realiza recortes em torno dele usando diferentes dimensões, sem a necessidade de segmentação da imagem. Vários modelos de CNN foram desenvolvidos e treinados com imagens reais de células cervicais. Os resultados mostraram que o modelo atingiu uma acurácia satisfatória de 0,94 usando o tamanho de caixa de 70x70 sem a necessidade de segmentar imagens. Acredita-se que essa metodologia possa auxiliar os citopatologistas na melhoria do diagnóstico e na qualidade dos resultados dos laboratórios, contribuindo para a prevenção do câncer de colo do útero.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124231869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecção Automática da Depressão Assistida por Stacking DNNs em Dados de Descritores de Características Visuais 通过在视觉特征描述符数据中堆叠DNNs辅助自动检测抑郁
Filipe Almeida, A. Soares, Laurindo de S. B. Neto, Kelson Aires
{"title":"Detecção Automática da Depressão Assistida por Stacking DNNs em Dados de Descritores de Características Visuais","authors":"Filipe Almeida, A. Soares, Laurindo de S. B. Neto, Kelson Aires","doi":"10.5753/sbcas.2023.229573","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229573","url":null,"abstract":"Pessoas vivenciam cada vez mais sentimentos de angústia, ansiedade e tristeza. Esses apontam, entre outras patologias, à depressão e, pior, pensamentos de ideação suicida. Posto isso, técnicas computacionais capazes de apontar tal transtorno precocemente se tornam indispensáveis. O presente trabalho apresenta um modelo baseado em Stacking Deep Neural Networks para análise de expressões faciais e subsequente detecção automática da depressão. Os resultados obtidos indicam um avanço promissor quanto à detecção automática da depressão. O modelo Stacking DNNs atinge, na base de teste, 78,5% de Recall e 62,8% de F1-Score. Tais valores são 22% e 17% superiores, respectivamente, a modelos unimodais que aplicam métodos semelhantes.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122432809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near Real-time Stress Prediction for Patients with Disturbed Allostatic Load 扰动适应负荷患者的近实时应力预测
William da Rosa Fröhlich, S. Rigo, M. Bez
{"title":"Near Real-time Stress Prediction for Patients with Disturbed Allostatic Load","authors":"William da Rosa Fröhlich, S. Rigo, M. Bez","doi":"10.5753/sbcas.2023.229381","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229381","url":null,"abstract":"Stress is one relevant cause of diseases nowadays, and prolonged exposure to stress can cause a disturbance in the allostatic load. Alternatives have been sought to deal with this situation and verify the impact of this allostatic load disorder. Wearable sensors are an option for automatically identifying acute stress since they can measure signs such as electrocardiogram, heart rate, electroencephalogram, electromyogram, or galvanic skin response. All these signals have intrinsic characteristics in a normal state and change if associated with stress occurrence. The literature presents Machine Learning Approaches and Deep Learning Models as alternatives to pattern detection in physiological signals. Nevertheless, we identify a gap regarding the allostatic load impact identification and the real-time classification when using these models. this article aims to acquire data in stress induction experiments in clinical and non-clinical patients, train a machine learning model, and, in sequence, carry out a new experiment to evaluate the classification in near real-time. The classification experiment presented results with accuracy above 92.72%. When it comes to real-time classification experiments we obtained an accuracy of 78.93%. Evaluating participants in experiments divided into clinical and non-clinical groups, a decrease of 5% in precision was identified. Based on the results obtained, we verified that the allostatic load can present challenges for real-time stress classification.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"287 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116565381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Otimização de parâmetros para detecção de batimentos cardíacos através do sinal Wi-Fi 通过Wi-Fi信号检测心跳的参数优化
Iandra Galdino, Brenda Gouveia, Julio Soto, Egberto Caballero, T. Ramos, D. Muchaluat-Saade, Célio Albuquerque
{"title":"Otimização de parâmetros para detecção de batimentos cardíacos através do sinal Wi-Fi","authors":"Iandra Galdino, Brenda Gouveia, Julio Soto, Egberto Caballero, T. Ramos, D. Muchaluat-Saade, Célio Albuquerque","doi":"10.5753/sbcas.2023.229965","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229965","url":null,"abstract":"Nos últimos anos, observa-se grande evolução no desenvolvimento de aplicativos e dispositivos para monitoramento de sinais vitais, sendo o monitoramento do batimento cardíaco crucial para a detecção de possíveis alterações da saúde humana. Este trabalho investiga um conjunto de configurações para o monitoramento cardíaco utilizando dados CSI de uma rede Wi-Fi convencional de forma não-invasiva ao corpo humano. Quatro configurações dos parâmetros do processamento do sinal foram investigadas para avaliar a proposta. Nos experimentos foram utilizados mais de 100 participantes, em 17 posições e atividades por participante. Na melhor configuração nossa proposta obteve um erro médio de 0, 07 bpm na estimação do batimento cardíaco na posição deitada.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131208197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metastasis Detection of Breast Cancer using Ensemble Deep Learning 基于集成深度学习的乳腺癌转移检测
Danyllo Carlos Silva e Silva, O. Cortes
{"title":"Metastasis Detection of Breast Cancer using Ensemble Deep Learning","authors":"Danyllo Carlos Silva e Silva, O. Cortes","doi":"10.5753/sbcas.2023.229560","DOIUrl":"https://doi.org/10.5753/sbcas.2023.229560","url":null,"abstract":"Breast cancer is one of the diseases which mainly affects women and is responsible for most of the deaths in Brazil, followed by skin and lung cancer. Among the consequences of occurrence, there are genetic predisposition, sedentarism, and late menopause, for example. The metastatic stage of this illness has a low survival rate because the disease spreads from the breast to other parts of the body, and the patients need the diagnosis as fast as possible to start the treatment. Moreover, state-of-art works claim that pathologists can reach 0.72 AUC in analyzing an exam composed of thousands of histopathologic images of lymph node sections. In this context, this work presents an Ensemble Convolutional Neural Network with Transfer Learning, called U-net VGG19, for detection using the PatchCamelyon dataset. Results indicate that the proposal reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet, and a custom-made CNN.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129569390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信