全景式牙科x光片性别估计:一种方法学方法

Ana Beatriz Hougaz, David Lima, Bernardo Peters, P. Cury, Luciano Oliveira
{"title":"全景式牙科x光片性别估计:一种方法学方法","authors":"Ana Beatriz Hougaz, David Lima, Bernardo Peters, P. Cury, Luciano Oliveira","doi":"10.5753/sbcas.2023.229563","DOIUrl":null,"url":null,"abstract":"Estimating sex using tooth radiographs requires knowledge of a comprehensive spectrum of maxillar anatomy, which ultimately demands specialization on the anatomical structures in the oral cavity. In this paper, we propose a more effective methodological study than others present in the literature for the problem of automatic sex estimation. Our methodology uses the largest publicly available data set in the literature, raises statistical significance in the performance assessment, and explains which part of the images influences the classification. Our findings showed that although EfficientNetV2-Large reached an average F1-score of 91,43% +- 0,67, an EfficientNet-B0 could be more beneficial with a very close F1-score and a much lighter architecture.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex estimation on panoramic dental radiographs: A methodological approach\",\"authors\":\"Ana Beatriz Hougaz, David Lima, Bernardo Peters, P. Cury, Luciano Oliveira\",\"doi\":\"10.5753/sbcas.2023.229563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating sex using tooth radiographs requires knowledge of a comprehensive spectrum of maxillar anatomy, which ultimately demands specialization on the anatomical structures in the oral cavity. In this paper, we propose a more effective methodological study than others present in the literature for the problem of automatic sex estimation. Our methodology uses the largest publicly available data set in the literature, raises statistical significance in the performance assessment, and explains which part of the images influences the classification. Our findings showed that although EfficientNetV2-Large reached an average F1-score of 91,43% +- 0,67, an EfficientNet-B0 could be more beneficial with a very close F1-score and a much lighter architecture.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用牙齿x线片估计性别需要上颌解剖学的全面知识,这最终需要口腔解剖学结构的专业化。在本文中,我们提出了一个比其他文献中更有效的方法研究自动性别估计问题。我们的方法使用文献中最大的公开可用数据集,提高了性能评估的统计显著性,并解释了图像的哪一部分影响分类。我们的研究结果表明,尽管EfficientNetV2-Large的平均f1得分为91.43% + 0.67,但效率网- b0的f1得分非常接近,而且架构更轻,因此可能更有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sex estimation on panoramic dental radiographs: A methodological approach
Estimating sex using tooth radiographs requires knowledge of a comprehensive spectrum of maxillar anatomy, which ultimately demands specialization on the anatomical structures in the oral cavity. In this paper, we propose a more effective methodological study than others present in the literature for the problem of automatic sex estimation. Our methodology uses the largest publicly available data set in the literature, raises statistical significance in the performance assessment, and explains which part of the images influences the classification. Our findings showed that although EfficientNetV2-Large reached an average F1-score of 91,43% +- 0,67, an EfficientNet-B0 could be more beneficial with a very close F1-score and a much lighter architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信