工具箱的血管x射线血管造影图像模拟

Gabriela Copetti Maccagnan, Jean Schmith, Marcia Santos, R. M. D. Figueiredo
{"title":"工具箱的血管x射线血管造影图像模拟","authors":"Gabriela Copetti Maccagnan, Jean Schmith, Marcia Santos, R. M. D. Figueiredo","doi":"10.5753/sbcas.2023.229439","DOIUrl":null,"url":null,"abstract":"In recent years, automatic computer techniques have been proven to be a great tool for the rapid detection and disease diagnosis. The core of those diagnostic systems are usually artificial intelligent algorithms like convolutional neural networks, in which thousands of images are needed for training. However, the available datasets of biomedical images, specially for X-ray angiography, are scarce. Therefore, we propose a toolbox for X-ray angiography images simulation to increase the number of available images as an alternative to data augmentation method for training artificial intelligence algorithms. The toolbox was developed with a set of functions to simulate complex vessel structures, as well as stenosis and aneurysms, in X-ray angiography images.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toolbox for vessel X-ray angiography images simulation\",\"authors\":\"Gabriela Copetti Maccagnan, Jean Schmith, Marcia Santos, R. M. D. Figueiredo\",\"doi\":\"10.5753/sbcas.2023.229439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, automatic computer techniques have been proven to be a great tool for the rapid detection and disease diagnosis. The core of those diagnostic systems are usually artificial intelligent algorithms like convolutional neural networks, in which thousands of images are needed for training. However, the available datasets of biomedical images, specially for X-ray angiography, are scarce. Therefore, we propose a toolbox for X-ray angiography images simulation to increase the number of available images as an alternative to data augmentation method for training artificial intelligence algorithms. The toolbox was developed with a set of functions to simulate complex vessel structures, as well as stenosis and aneurysms, in X-ray angiography images.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,自动计算机技术已被证明是快速检测和诊断疾病的重要工具。这些诊断系统的核心通常是卷积神经网络等人工智能算法,其中需要数千张图像进行训练。然而,可用的生物医学图像数据集,特别是x射线血管造影,是稀缺的。因此,我们提出了一个x射线血管造影图像模拟工具箱,以增加可用图像的数量,作为训练人工智能算法的数据增强方法的替代方法。该工具箱开发了一套功能来模拟复杂的血管结构,以及x射线血管造影图像中的狭窄和动脉瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toolbox for vessel X-ray angiography images simulation
In recent years, automatic computer techniques have been proven to be a great tool for the rapid detection and disease diagnosis. The core of those diagnostic systems are usually artificial intelligent algorithms like convolutional neural networks, in which thousands of images are needed for training. However, the available datasets of biomedical images, specially for X-ray angiography, are scarce. Therefore, we propose a toolbox for X-ray angiography images simulation to increase the number of available images as an alternative to data augmentation method for training artificial intelligence algorithms. The toolbox was developed with a set of functions to simulate complex vessel structures, as well as stenosis and aneurysms, in X-ray angiography images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信