基于集成深度学习的乳腺癌转移检测

Danyllo Carlos Silva e Silva, O. Cortes
{"title":"基于集成深度学习的乳腺癌转移检测","authors":"Danyllo Carlos Silva e Silva, O. Cortes","doi":"10.5753/sbcas.2023.229560","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the diseases which mainly affects women and is responsible for most of the deaths in Brazil, followed by skin and lung cancer. Among the consequences of occurrence, there are genetic predisposition, sedentarism, and late menopause, for example. The metastatic stage of this illness has a low survival rate because the disease spreads from the breast to other parts of the body, and the patients need the diagnosis as fast as possible to start the treatment. Moreover, state-of-art works claim that pathologists can reach 0.72 AUC in analyzing an exam composed of thousands of histopathologic images of lymph node sections. In this context, this work presents an Ensemble Convolutional Neural Network with Transfer Learning, called U-net VGG19, for detection using the PatchCamelyon dataset. Results indicate that the proposal reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet, and a custom-made CNN.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastasis Detection of Breast Cancer using Ensemble Deep Learning\",\"authors\":\"Danyllo Carlos Silva e Silva, O. Cortes\",\"doi\":\"10.5753/sbcas.2023.229560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is one of the diseases which mainly affects women and is responsible for most of the deaths in Brazil, followed by skin and lung cancer. Among the consequences of occurrence, there are genetic predisposition, sedentarism, and late menopause, for example. The metastatic stage of this illness has a low survival rate because the disease spreads from the breast to other parts of the body, and the patients need the diagnosis as fast as possible to start the treatment. Moreover, state-of-art works claim that pathologists can reach 0.72 AUC in analyzing an exam composed of thousands of histopathologic images of lymph node sections. In this context, this work presents an Ensemble Convolutional Neural Network with Transfer Learning, called U-net VGG19, for detection using the PatchCamelyon dataset. Results indicate that the proposal reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet, and a custom-made CNN.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是主要影响妇女的疾病之一,在巴西造成的死亡人数最多,其次是皮肤癌和肺癌。在发生的后果中,有遗传易感性,久坐不动和绝经晚,例如。这种疾病的转移期生存率很低,因为这种疾病会从乳房扩散到身体的其他部位,患者需要尽快得到诊断才能开始治疗。此外,最先进的工作声称病理学家在分析由数千张淋巴结切片的组织病理图像组成的检查时可以达到0.72 AUC。在这种情况下,这项工作提出了一个具有迁移学习的集成卷积神经网络,称为U-net VGG19,用于使用PatchCamelyon数据集进行检测。结果表明,该方案的AUC为0.9565,loss为0.2869,比VGG16、VGG19、MobileNetV3Large、ConcatNet和定制CNN等最先进的CNN取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metastasis Detection of Breast Cancer using Ensemble Deep Learning
Breast cancer is one of the diseases which mainly affects women and is responsible for most of the deaths in Brazil, followed by skin and lung cancer. Among the consequences of occurrence, there are genetic predisposition, sedentarism, and late menopause, for example. The metastatic stage of this illness has a low survival rate because the disease spreads from the breast to other parts of the body, and the patients need the diagnosis as fast as possible to start the treatment. Moreover, state-of-art works claim that pathologists can reach 0.72 AUC in analyzing an exam composed of thousands of histopathologic images of lymph node sections. In this context, this work presents an Ensemble Convolutional Neural Network with Transfer Learning, called U-net VGG19, for detection using the PatchCamelyon dataset. Results indicate that the proposal reached an AUC of 0.9565 and a loss of 0.2869, reaching better results than state-of-the-art CNNs such as VGG16, VGG19, MobileNetV3Large, ConcatNet, and a custom-made CNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信