Madison R Boda, Lavender A Otieno, Ashleigh E Smith, Mitchell R Goldsworthy, Simranjit K Sidhu
{"title":"Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue.","authors":"Madison R Boda, Lavender A Otieno, Ashleigh E Smith, Mitchell R Goldsworthy, Simranjit K Sidhu","doi":"10.1007/s00221-024-06874-z","DOIUrl":"10.1007/s00221-024-06874-z","url":null,"abstract":"<p><p>Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool with potential for managing neuromuscular fatigue, possibly due to alterations in corticospinal excitability. However, inconsistencies in intra- and inter- individual variability responsiveness to tDCS limit its clinical use. Emerging evidence suggests harnessing homeostatic metaplasticity induced via tDCS may reduce variability and boost its outcomes, yet little is known regarding its influence on neuromuscular fatigue in healthy adults. We explored whether cathodal tDCS (ctDCS) prior to exercise combined with anodal tDCS (atDCS) could augment corticospinal excitability and attenuate neuromuscular fatigue. 15 young healthy adults (6 males, 22 ± 4 years) participated in four pseudo-randomised neuromodulation sessions: sham stimulation prior and during exercise, sham stimulation prior and atDCS during exercise, ctDCS prior and atDCS during exercise, ctDCS prior and sham stimulation during exercise. The exercise constituted an intermittent maximal voluntary contraction (MVC) of the right first dorsal interosseous (FDI) for 10 min. Neuromuscular fatigue was quantified as an attenuation in MVC force, while motor evoked potential (MEP) amplitude provided an assessment of corticospinal excitability. MEP amplitude increased during the fatiguing exercise, whilst across time, force decreased. There were no differences in MEP amplitudes or force between neuromodulation sessions. These outcomes highlight the ambiguity of harnessing metaplasticity to ameliorate neuromuscular fatigue in young healthy individuals.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1999-2012"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nelly Seusing, Sebastian Strauss, Robert Fleischmann, Christina Nafz, Sergiu Groppa, Muthuraman Muthuraman, Hao Ding, Winston D Byblow, Martin Lotze, Matthias Grothe
{"title":"The excitability of ipsilateral motor evoked potentials is not task-specific and spatially distinct from the contralateral motor hotspot.","authors":"Nelly Seusing, Sebastian Strauss, Robert Fleischmann, Christina Nafz, Sergiu Groppa, Muthuraman Muthuraman, Hao Ding, Winston D Byblow, Martin Lotze, Matthias Grothe","doi":"10.1007/s00221-024-06851-6","DOIUrl":"10.1007/s00221-024-06851-6","url":null,"abstract":"<p><strong>Objective: </strong>The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks.</p><p><strong>Methods: </strong>MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained.</p><p><strong>Results: </strong>The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs.</p><p><strong>Conclusion: </strong>Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1851-1859"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emotional body representations: more pronounced effect of hands at a more explicit level of awareness.","authors":"Myrto Efstathiou, Louise S Delicato, Anna Sedda","doi":"10.1007/s00221-024-06839-2","DOIUrl":"10.1007/s00221-024-06839-2","url":null,"abstract":"<p><p>To understand conditions such as body dysmorphic disorder, we need to understand healthy individuals' perceptual, conceptual, and emotional representations of their bodies. Not much is known about the differences in these representations across body districts, for example, hands, feet, and whole-body, despite their differences at sensory and functional levels. To understand this, we developed more implicit and explicit measures of body satisfaction for these body districts. Sixty-seven participants (age M = 30.66, SD = 11.19) completed a series of online Implicit Association Tests (IAT) and a Body Image Satisfaction Visual Analogue Scale (BISVAS; explicit) for each body district (hands/feet/whole body). The results show no differences in the more implicit level of awareness in hands, feet and whole body, while differences are apparent at a more explicit level of awareness, with higher scores for body image satisfaction for the hands than the whole body and marginally significant lower scores for feet than hands. Those findings suggest that visual attention, level of concern attributed to a body district, and disgust drivers are possible factors affecting the experience of attitudinal body image satisfaction.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1595-1608"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidating hippocampal proteome dynamics in moderate hepatic encephalopathy rats: insights from high-resolution mass spectrometry.","authors":"Shambhu Kumar Prasad, Vishal Vikram Singh, Arup Acharjee, Papia Acharjee","doi":"10.1007/s00221-024-06853-4","DOIUrl":"10.1007/s00221-024-06853-4","url":null,"abstract":"<p><p>Hepatic encephalopathy (HE) is a debilitating neurological disorder associated with liver failure and characterized by impaired brain function. Decade-long studies have led to significant advances in our understanding of HE; however, effective therapeutic management of HE is lacking, and HE continues to be a significant cause of morbidity and mortality in patients, underscoring the need for continued research into its pathophysiology and treatment. Accordingly, the present study provides a comprehensive overview aimed at elucidating the molecular underpinnings of HE and identifying potential therapeutic targets. A moderate-grade HE model was induced in rats using thioacetamide, which simulates the liver damage observed in patients, and its impact on cognitive function, neuronal arborization, and cellular morphology was also evaluated. We employed label-free LC-MS/MS proteomics to quantitatively profile hippocampal proteins to explore the molecular mechanism of HE pathogenesis; 2175 proteins were identified, 47 of which exhibited significant alterations in moderate-grade HE. The expression of several significantly upregulated proteins, such as FAK1, CD9 and Tspan2, was further validated at the transcript and protein levels, confirming the mass spectrometry results. These proteins have not been previously reported in HE. Utilizing Metascape, a tool for gene annotation and analysis, we further studied the biological pathways integral to brain function, including gliogenesis, the role of erythrocytes in maintaining blood-brain barrier integrity, the modulation of chemical synaptic transmission, astrocyte differentiation, the regulation of organ growth, the response to cAMP, myelination, and synaptic function, which were disrupted during HE. The STRING database further elucidated the protein‒protein interaction patterns among the differentially expressed proteins. This study provides novel insights into the molecular mechanisms driving HE and paves the way for identifying novel therapeutic targets for improved disease management.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1659-1679"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The inhibitory effect of a recent distractor: singleton vs. multiple distractors.","authors":"Eleanor S Smith, Trevor J Crawford","doi":"10.1007/s00221-024-06846-3","DOIUrl":"10.1007/s00221-024-06846-3","url":null,"abstract":"<p><p>In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1745-1759"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An fMRI-based investigation of the effects of odors on the functional connectivity network underlying the working memory.","authors":"Faezeh Heidari, Mohammad Bagher Shiran, Haniyeh Kaheni, Asra Karami, Arash Zare-Sadeghi","doi":"10.1007/s00221-024-06848-1","DOIUrl":"10.1007/s00221-024-06848-1","url":null,"abstract":"<p><p>In the human brain, the regions responsible for emotion processing, motivation, and memory are heavily influenced by olfaction, whose neural pathway is directly exposed to the outer world. In this study, we used fMRI to examine how different olfactory conditions might affect the functional connectivity circuit underlying working memory in the brain. To this end, 30 adults (aged 20-35), 13 males and 17 females, with high educational levels were chosen. Participants were screened for potential olfactory issues before undergoing the Sniffin' sticks test, which was part of the inclusion criteria. Before imaging, each participant was given the required level of training and was then asked to complete four olfactory tests involving pleasant and unpleasant odors, air, and null stimulation. The results of Seed-based analysis suggested a function connection between the inferior parietal region and the left frontal pole region upon olfactory stimulation with vanilla scent in contrast to null stimulation in this comparison, ROI-based analysis revealed an inverse synchronous among the entorhinal cortex, orbitofrontal cortex, and dorsolateral prefrontal cortex (dlPFC). Both dlPFC and hippocampus were involved in olfactory discrimination between two different stimulants. Our findings indicate the presence of inverse correlations between several regions associated with olfaction and working memory, with pleasant scents leaving a stronger impact on the working memory-related areas, particularly the inferior parietal region.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1561-1571"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colin R Grove, Brian J Loyd, Leland E Dibble, Michael C Schubert
{"title":"Evidence for the differential efficacy of yaw and pitch gaze stabilization mechanisms in people with multiple sclerosis.","authors":"Colin R Grove, Brian J Loyd, Leland E Dibble, Michael C Schubert","doi":"10.1007/s00221-024-06864-1","DOIUrl":"10.1007/s00221-024-06864-1","url":null,"abstract":"<p><p>People with multiple sclerosis (PwMS) who report dizziness often have gaze instability due to vestibulo-ocular reflex (VOR) deficiencies and compensatory saccade (CS) abnormalities. Herein, we aimed to describe and compare the gaze stabilization mechanisms for yaw and pitch head movements in PwMS. Thirty-seven PwMS (27 female, mean ± SD age = 53.4 ± 12.4 years old, median [IQR] Expanded Disability Status Scale Score = 3.5, [1.0]. We analyzed video head impulse test results for VOR gain, CS frequency, CS latency, gaze position error (GPE) at impulse end, and GPE at 400 ms after impulse start. Discrepancies were found for median [IQR] VOR gain in yaw (0.92 [0.14]) versus pitch-up (0.71 [0.44], p < 0.001) and pitch-down (0.81 [0.44], p = 0.014]), CS latency in yaw (258.13 [76.8]) ms versus pitch-up (208.78 [65.97]) ms, p = 0.001] and pitch-down (132.17 [97.56] ms, p = 0.006), GPE at impulse end in yaw (1.15 [1.85] degs versus pitch-up (2.71 [3.9] degs, p < 0.001), and GPE at 400 ms in yaw (-0.25 [0.98] degs) versus pitch-up (1.53 [1.07] degs, p < 0.001) and pitch-down (1.12 [1.82] degs, p = 0.001). Compared with yaw (0.91 [0.75]), CS frequency was similar for pitch-up (1.03 [0.93], p = 0.999) but lower for pitch-down (0.65 [0.64], p = 0.023). GPE at 400 ms was similar for yaw and pitch-down (1.88 [2.76] degs, p = 0.400). We postulate that MS may have preferentially damaged the vertical VOR and saccade pathways in this cohort.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1797-1806"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas De Wachter, Manon Roose, Matthias Proost, Jelle Habay, Matthias Verstraelen, Sander De Bock, Kevin De Pauw, Romain Meeusen, Jeroen Van Cutsem, Bart Roelands
{"title":"Prefrontal cortex oxygenation during a mentally fatiguing task in normoxia and hypoxia.","authors":"Jonas De Wachter, Manon Roose, Matthias Proost, Jelle Habay, Matthias Verstraelen, Sander De Bock, Kevin De Pauw, Romain Meeusen, Jeroen Van Cutsem, Bart Roelands","doi":"10.1007/s00221-024-06867-y","DOIUrl":"10.1007/s00221-024-06867-y","url":null,"abstract":"<p><p>Mental fatigue (MF) and hypoxia impair cognitive performance through changes in brain hemodynamics. We want to elucidate the role of prefrontal cortex (PFC)-oxygenation in MF. Twelve participants (22.9 ± 3.5 years) completed four experimental trials, (1) MF in (normobaric) hypoxia (MF_HYP) (3.800 m; 13.5%O<sub>2</sub>), (2) MF in normoxia (MF_NOR) (98 m; 21.0%O<sub>2</sub>), (3) Control task in HYP (CON_HYP), (4) Control in NOR (CON_NOR). Participants performed a 2-back task, Digit Symbol Substitution test and Psychomotor Vigilance task before and after a 60-min Stroop task or an emotionally neutral documentary. Brain oxygenation was measured through functional Near Infrared Spectroscopy. Subjective feelings of MF and physiological measures (heart rate, oxygen saturation, blood glucose and hemoglobin) were recorded. The Stroop task resulted in increased subjective feelings of MF compared to watching the documentary. 2-back accuracy was lower post task compared to pre task in MF_NOR and CON_NOR, while no differences were found in the other cognitive tasks. The fraction of inspired oxygen did not impact feelings of MF. Although performing the Stroop resulted in higher subjective feelings of MF, hypoxia had no effect on the severity of self-reported MF. Additionally, this study could not provide evidence for a role of oxygenation of the PFC in the build-up of MF.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1807-1819"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of different exercise modes and intensities on cognitive performance, adult hippocampal neurogenesis, and synaptic plasticity in mice.","authors":"Hanlin Jiang, Yusuke Kimura, Shota Inoue, Changxin Li, Junpei Hatakeyama, Masahiro Wakayama, Daisuke Takamura, Hideki Moriyama","doi":"10.1007/s00221-024-06854-3","DOIUrl":"10.1007/s00221-024-06854-3","url":null,"abstract":"<p><p>Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1709-1719"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Auditory vigilance task performance and cerebral hemodynamics: effects of spatial uncertainty.","authors":"Lucas J Hess, Eric T Greenlee","doi":"10.1007/s00221-024-06857-0","DOIUrl":"10.1007/s00221-024-06857-0","url":null,"abstract":"<p><p>The vigilance decrement, a temporal decline in detection performance, has been observed across multiple sensory modalities. Spatial uncertainty about the location of task-relevant stimuli has been demonstrated to increase the demands of vigilance and increase the severity of the vigilance decrement when attending to visual displays. The current study investigated whether spatial uncertainty also increases the severity of the vigilance decrement and task demands when an auditory display is used. Individuals monitored an auditory display to detect critical signals that were shorter in duration than non-target stimuli. These auditory stimuli were presented in either a consistent, predictable pattern that alternated sound presentation from left to right (spatial certainty) or an inconsistent, unpredictable pattern that randomly presented sounds from the left or right (spatial uncertainty). Cerebral blood flow velocity (CBFV) was measured to assess the neurophysiological demands of the task. A decline in performance and CBFV was observed in both the spatially certain and spatially uncertain conditions, suggesting that spatial auditory vigilance tasks are demanding and can result in a vigilance decrement. Spatial uncertainty resulted in a more severe vigilance decrement in correct detections compared to spatial certainty. Reduced right-hemispheric CBFV was also observed during spatial uncertainty compared to spatial certainty. Together, these results suggest that auditory spatial uncertainty hindered performance and required greater attentional demands compared to spatial certainty. These results concur with previous research showing the negative impact of spatial uncertainty in visual vigilance tasks, but the current results contrast recent research showing no effect of spatial uncertainty on tactile vigilance.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1787-1795"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}