Biological kinematics: a detailed review of the velocity-curvature power law calculation.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Dagmar Scott Fraser, Massimiliano Di Luca, Jennifer Louise Cook
{"title":"Biological kinematics: a detailed review of the velocity-curvature power law calculation.","authors":"Dagmar Scott Fraser, Massimiliano Di Luca, Jennifer Louise Cook","doi":"10.1007/s00221-025-07065-0","DOIUrl":null,"url":null,"abstract":"<p><p>The 'one-third power law', relating velocity to curvature is among the most established kinematic invariances in bodily movements. Despite being heralded amongst the 'kinematic laws of nature' (Flash 2021, p. 4), there is no consensus on its origin, common reporting practice, or vetted analytical protocol. Many legacy elements of analytical protocols in the literature are suboptimal, such as noise amplification from repeated differentiation, biases arising from filtering, log transformation distortion, and injudicious linear regression, all of which undermine power law calculations. Recent findings of power law divergences in clinical populations have highlighted the need for improved protocols. This article reviews prior power law calculation protocols, identifies suboptimal practices, before proposing candidate solutions grounded in the kinematics literature. We evaluate these candidates via two simple criteria: firstly, they must avoid spurious confirmation of the law, secondly, they must confirm the law when it is present. Ultimately, we synthesise candidate solutions into a vetted, modular protocol which we make freely available to the scientific community. The protocol's modularity accommodates future analytical advances and permits re-use in broader kinematic science applications. We propose that adoption of this protocol will eliminate artificial confirmation of the law and facilitate more sensitive quantification of recently noted power law divergences, which are associated with neurochemical disturbances arising from dopaminergic drugs, and in conditions such as Parkinson's and autism.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 5","pages":"107"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07065-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The 'one-third power law', relating velocity to curvature is among the most established kinematic invariances in bodily movements. Despite being heralded amongst the 'kinematic laws of nature' (Flash 2021, p. 4), there is no consensus on its origin, common reporting practice, or vetted analytical protocol. Many legacy elements of analytical protocols in the literature are suboptimal, such as noise amplification from repeated differentiation, biases arising from filtering, log transformation distortion, and injudicious linear regression, all of which undermine power law calculations. Recent findings of power law divergences in clinical populations have highlighted the need for improved protocols. This article reviews prior power law calculation protocols, identifies suboptimal practices, before proposing candidate solutions grounded in the kinematics literature. We evaluate these candidates via two simple criteria: firstly, they must avoid spurious confirmation of the law, secondly, they must confirm the law when it is present. Ultimately, we synthesise candidate solutions into a vetted, modular protocol which we make freely available to the scientific community. The protocol's modularity accommodates future analytical advances and permits re-use in broader kinematic science applications. We propose that adoption of this protocol will eliminate artificial confirmation of the law and facilitate more sensitive quantification of recently noted power law divergences, which are associated with neurochemical disturbances arising from dopaminergic drugs, and in conditions such as Parkinson's and autism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信