Experimental Neurobiology最新文献

筛选
英文 中文
β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons. ARHGEF7鸟嘌呤核苷酸交换因子家族成员β-PIX-d可激活Rac1并诱导原发性皮层神经元的神经元发生
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-10-31 DOI: 10.5607/en24026
Seunghyuk Kim, Heeyoung Park, Jieun Kang, Seunghyuk Choi, Ali Sadra, Sung-Oh Huh
{"title":"β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons.","authors":"Seunghyuk Kim, Heeyoung Park, Jieun Kang, Seunghyuk Choi, Ali Sadra, Sung-Oh Huh","doi":"10.5607/en24026","DOIUrl":"10.5607/en24026","url":null,"abstract":"<p><p>β-PIX, a Rac1/Cdc42-specific guanine nucleotide exchange factor, is known to regulate actin cytoskeleton remodeling during cell migration. In this study, we investigated the effects of β-PIX-d, an isoform of β-PIX, on neocortical development and neuritogenesis. Overexpression of β-PIX-d in the embryonic neocortex induced increased cell clusters and enhanced neurite outgrowth in cortical neurons. Following in utero electroporation of β-PIX-d expression vectors into neuronal progenitor cells at embryonic day 13.5 (E13.5), histological analysis at postnatal day 0 (P0) revealed the presence of clustered neurons and neurites outside of the marginal zone (MZ). Immunofluorescence staining with the neuronal marker TuJ1 confirmed that the clustered structures were predominantly composed of neurons. Layer-specific marker analysis further demonstrated the misplacement of layer V-VI neurons into layer I and the subarachnoid space. In primary neocortical cultures, β-PIX-d overexpression promoted neuritogenesis and increased Rac1 activity, as detected by pull-down assays. These findings suggest that β-PIX-d and Rac1 interactions play a critical role in the formation of neocortical clustering and the regulation of neuritogenesis.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 5","pages":"215-224"},"PeriodicalIF":1.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Odor Category Similarity on Multimedia Experience. 气味类别相似性对多媒体体验的影响
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-10-31 DOI: 10.5607/en24020
Kwangsu Kim, Jisub Bae, JeeWon Lee, Sun Ae Moon, Sang-Ho Lee, Won-Seok Kang, Cheil Moon
{"title":"The Impact of Odor Category Similarity on Multimedia Experience.","authors":"Kwangsu Kim, Jisub Bae, JeeWon Lee, Sun Ae Moon, Sang-Ho Lee, Won-Seok Kang, Cheil Moon","doi":"10.5607/en24020","DOIUrl":"10.5607/en24020","url":null,"abstract":"<p><p>Although we have multiple senses, multimedia mainly targets vision and olfaction. To expand the senses impacted by multimedia, olfactory stimulation has been used to enhance the sense of reality. Odors are primarily matched with objects in scenes. However, it is impractical to select all odors that match all objects in a scene and offer them to viewers. As an alternative, offering a single odor in a category as representative of other odors belonging to that category has been suggested. However, it is unclear whether viewers' responses to videos with multiple odors (e.g., rose, lavender, and lily) from a category (e.g., flowers) are comparable. Therefore, we studied whether odors belonging to a given category could be similar in behavioral congruency and in the five frequency bands (delta, theta, alpha, beta, and gamma) of electroencephalogram (EEG) data collected while viewers watched videos. We conducted questionnaires and EEG experiments to understand the effects of similar odors belonging to categories. Our results showed that similar odors in a specific odor category were more congruent with videos than those in different odor categories. In our EEG data, the delta and theta bands were mainly clustered when odors were offered to viewers in similar categories. The theta band is known to be primarily related to the neural signals of odor information. Our studies showed that choosing odors based on odor categories in multimedia can be feasible.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 5","pages":"238-250"},"PeriodicalIF":1.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex. 轨道额叶皮层的兴奋和抑制神经元对情绪行为的双向控制
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-10-31 DOI: 10.5607/en24021
Jihoon Kim, Mijung Choi, Jimin Lee, Inah Park, Kyungjin Kim, Han Kyoung Choe
{"title":"Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex.","authors":"Jihoon Kim, Mijung Choi, Jimin Lee, Inah Park, Kyungjin Kim, Han Kyoung Choe","doi":"10.5607/en24021","DOIUrl":"10.5607/en24021","url":null,"abstract":"<p><p>The orbitofrontal cortex (OFC) plays a crucial role in mood disorders; however, its specific role in the emotional behaviors of mice remains unclear. This study investigates the bidirectional control of emotional behaviors using population calcium dynamics and optogenetic manipulation of OFC neurons. Fiber photometry of OFC neurons revealed that OFC excitatory neurons consistently responded to the onset and offset of aversive conditions, showing decreased activation in response to anxiogenic and stressful stimuli, including tail suspension, restraint stress, and exposure to the center of the open field. The selective activation of excitatory neurons in the OFC reduced the time spent in the center of the open field, whereas optogenetic activation of inhibitory neurons in the OFC induced the opposite behavioral changes. We also provided a brain-wide activation map for OFC excitatory and inhibitory neuron activation. Our findings demonstrate that excitatory and inhibitory neurons in the OFC play opposing roles in the regulation of emotional behaviors. These results provide new insights into the neural mechanisms underlying emotional control and suggest that targeting these specific neuronal populations may offer novel therapeutic strategies for emotional disorders.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 5","pages":"225-237"},"PeriodicalIF":1.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains. 全身性炎症会减轻最初的脑损伤,但会减弱损伤脑修复过程中神经元的延伸和突触的形成
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-10-31 DOI: 10.5607/en24018
Sushil Gaire, Haijie Yang, Manisha Dumre, Eun Jeong Lee, Sang-Myun Park, Eun-Hye Joe
{"title":"Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains.","authors":"Sushil Gaire, Haijie Yang, Manisha Dumre, Eun Jeong Lee, Sang-Myun Park, Eun-Hye Joe","doi":"10.5607/en24018","DOIUrl":"10.5607/en24018","url":null,"abstract":"<p><p>In this study, we explored the impact of systemic inflammation on initial brain injury and repair processes, including neurite extension and synapse formation. For this purpose, we established a brain injury model by administering adenosine triphosphate (ATP), a component of damage-associated molecular patterns (DAMPs), through stereotaxic injection into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip). Bulk RNA-sequencing (RNA-seq) analyses and immunostaining for microtubule-associated protein 2 (MAP2) and tyrosine hydroxylase (TH) showed that LPS-ip led to a reduction in initial brain injury, but inhibited neurite extension into the damaged brain. LPS-ip upregulated expression of defense response genes and anti-apoptotic genes, but decreased expression of genes associated with repair and regeneration. In addition, LPS-ip reduced levels of vGlut1 and PSD95 (markers for excitatory pre and post synapses, respectively), but had little effect on vGAT and gephyrin (markers for inhibitory pre and post synapses, respectively). Taken together, these findings suggest that systemic inflammation reduce initial damage but impede subsequent repair process.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 5","pages":"251-262"},"PeriodicalIF":1.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain. 产生星形胶质细胞特异性 BEST1 条件性基因敲除小鼠,降低大脑中的强直性 GABA 抑制。
IF 2.4 4区 医学
Experimental Neurobiology Pub Date : 2024-08-31 DOI: 10.5607/en24019
Jinhyeong Joo,Ki Jung Kim,Jiwoon Lim,Sun Yeong Choi,Wuhyun Koh,C Justin Lee
{"title":"Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain.","authors":"Jinhyeong Joo,Ki Jung Kim,Jiwoon Lim,Sun Yeong Choi,Wuhyun Koh,C Justin Lee","doi":"10.5607/en24019","DOIUrl":"https://doi.org/10.5607/en24019","url":null,"abstract":"Bestrophin-1 (BEST1) is a Ca2+-activated anion channel known for its role in astrocytes. Best1 is permeable to gliotransmitters, including GABA, to contribute to tonic GABA inhibition and modulate synaptic transmission in neighboring neurons. Despite the crucial functions of astrocytic BEST1, there is an absence of genetically engineered cell-type specific conditional mouse models addressing these roles. In this study, we developed an astrocyte-specific BEST1 conditional knock-out (BEST1 aKO) mouse line. Using the embryonic stem cell (ES cell) targeting method, we developed Best1 floxed mice (C57BL/6JCya-Best1em1flox/Cya), which have exon 3, 4, 5, and 6 of Best1 flanked by two loxP sites. By crossing with hGFAP-CreERT2 mice, we generated Best1 floxed/hGFAP-CreERT2 mice, which allowed for the tamoxifen-inducible deletion of Best1 under the human GFAP promoter. We characterized its features across various brain regions, including the striatum, hippocampal dentate gyrus (HpDG), and Parafascicular thalamic nucleus (Pf). Compared to the Cre-negative control, we observed significantly reduced BEST1 protein expression in immunohistochemistry (IHC) and tonic GABA inhibition in patch clamp recordings. The reduction in tonic GABA inhibition was 66.7% in the striatum, 46.4% in the HpDG, and 49.6% in the Pf. Our findings demonstrate that the BEST1 channel in astrocytes significantly contributes to tonic inhibition in the local brain areas. These mice will be valuable for future studies not only on tonic GABA release but also on tonic release of gliotransmitters mediated by astrocytic BEST1.","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"14 1","pages":"180-192"},"PeriodicalIF":2.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylated Tau in the Taste Buds of Alzheimer's Disease Mouse Models. 阿尔茨海默病小鼠模型味蕾中的磷酸化 Tau
IF 2.4 4区 医学
Experimental Neurobiology Pub Date : 2024-08-31 DOI: 10.5607/en24004
Hyun Ji Kim,Bo Hye Kim,Dong Kyu Kim,Hanbin Kim,Sang-Hyun Choi,Dong-Hoon Kim,Myunghwan Choi,Inhee Mook-Jung,Yong Taek Jeong,Obin Kwon
{"title":"Phosphorylated Tau in the Taste Buds of Alzheimer's Disease Mouse Models.","authors":"Hyun Ji Kim,Bo Hye Kim,Dong Kyu Kim,Hanbin Kim,Sang-Hyun Choi,Dong-Hoon Kim,Myunghwan Choi,Inhee Mook-Jung,Yong Taek Jeong,Obin Kwon","doi":"10.5607/en24004","DOIUrl":"https://doi.org/10.5607/en24004","url":null,"abstract":"Numerous systemic diseases manifest with oral symptoms and signs. The molecular diagnosis of Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, currently relies on invasive or expensive methods, emphasizing the imperative for easily accessible biomarkers. In this study, we explored the expression patterns of key proteins implicated in AD pathophysiology within the taste buds of mice. We detected the expression of amyloid precursor protein (APP) and tau protein in the taste buds of normal C57BL/6 mice. Phosphorylated tau was predominantly found in type II and III taste cells, while APP was located in type I taste cells. Remarkably, we observed significantly stronger immunoreactivity to phosphorylated tau in the taste buds of aged AD mouse models compared to age-matched controls. These findings underscore the oral expression of biomarkers associated with AD, highlighting the diagnostic potential of the oral cavity for neurodegenerative diseases.","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"65 1","pages":"202-214"},"PeriodicalIF":2.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAM19A5 Deficiency Mitigates the Aβ Plaque Burden and Improves Cognition in Mouse Models of Alzheimer's Disease. 缺失 FAM19A5 可减轻 Aβ 斑块负担并改善阿尔茨海默病小鼠模型的认知能力。
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-08-31 DOI: 10.5607/en24017
Sumi Park, Anu Shahapal, Sangjin Yoo, Hoyun Kwak, Minhyeok Lee, Sang-Myeong Lee, Jong-Ik Hwang, Jae Young Seong
{"title":"FAM19A5 Deficiency Mitigates the Aβ Plaque Burden and Improves Cognition in Mouse Models of Alzheimer's Disease.","authors":"Sumi Park, Anu Shahapal, Sangjin Yoo, Hoyun Kwak, Minhyeok Lee, Sang-Myeong Lee, Jong-Ik Hwang, Jae Young Seong","doi":"10.5607/en24017","DOIUrl":"https://doi.org/10.5607/en24017","url":null,"abstract":"<p><p>FAM19A5, a novel secretory protein highly expressed in the brain, is potentially associated with the progression of Alzheimer's disease (AD). However, its role in the AD pathogenesis remains unclear. Here, we investigated the potential function of FAM19A5 in the context of AD. We generated APP/PS1 mice with partial FAM19A5 deficiency, termed APP/PS1/FAM19A5<sup>+/LacZ</sup> mice. Compared with control APP/PS1 mice, APP/PS1/FAM19A5<sup>+/LacZ</sup> mice exhibited significantly lower Aβ plaque density and prolonged the lifespan of the APP/PS1 mice. To further explore the therapeutic potential of targeting FAM19A5, we developed a FAM19A5 antibody. Administration of this antibody to APP/PS1 mice significantly improved their performance in the Y-maze and passive avoidance tests, indicating enhanced cognitive function. This effect was replicated in 5XFAD mice, a model of early-onset AD characterized by rapid Aβ accumulation. Additionally, FAM19A5 antibody treatment in 5XFAD mice led to enhanced exploration of novel objects and increased spontaneous alternation behavior in the novel object recognition and Y-maze tests, respectively, indicating improved cognitive function. These findings suggest that FAM19A5 plays a significant role in AD pathology and that targeting with FAM19A5 antibodies may be a promising therapeutic strategy for AD.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 4","pages":"193-201"},"PeriodicalIF":1.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice. 体育锻炼对小鼠肾上腺素诱发的疼痛-抑郁二联症中脑源性神经营养因子表达的调节作用
IF 2.4 4区 医学
Experimental Neurobiology Pub Date : 2024-08-31 DOI: 10.5607/en24014
Dong-Wook Kang,Sheu-Ran Choi,Hyunjin Shin,Hyeryeong Lee,Jaehong Park,Miae Lee,Miok Bae,Hyun-Woo Kim
{"title":"Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice.","authors":"Dong-Wook Kang,Sheu-Ran Choi,Hyunjin Shin,Hyeryeong Lee,Jaehong Park,Miae Lee,Miok Bae,Hyun-Woo Kim","doi":"10.5607/en24014","DOIUrl":"https://doi.org/10.5607/en24014","url":null,"abstract":"Pain accompanied by depressive symptoms is a common reason for seeking medical assistance, and many chronic pain patients experience comorbid depression. The brain-derived neurotrophic factor (BDNF) is a well-known neurotrophin expressed throughout the nervous system, playing a crucial role in neuronal growth and neuroplasticity. This study aimed to examine the effects of exercise on BDNF expression in the nervous system and reserpine (RSP)-induced pain-depression dyad. RSP (1 mg/kg) was subcutaneously administered once daily for three days in mice. The exercise was performed using a rota-rod tester for seven consecutive days following RSP administration. Pain responses were evaluated using von Frey filaments, and depression-like behaviors were assessed through forced swimming and open field tests. Immunofluorescence staining was performed to examine the changes in BDNF expression in the dorsal root ganglion (DRG), spinal cord, and hippocampus. Administration of RSP reduced mechanical paw withdrawal threshold, increased immobility time in the forced swimming test, and decreased movement in the open field test. The immunoreactivity of BDNF was increased in the DRG and spinal dorsal regions, and decreased in the hippocampus after RSP administration. Physical exercise significantly reduced the RSP-induced mechanical hypersensitivity and depression-like behaviors. In addition, exercise suppressed not only the increased expression of BDNF in the DRG and spinal dorsal regions but also the decreased expression of BDNF in the hippocampus induced by RSP administration. These findings suggest that repetitive exercise could serve as an effective and non-invasive treatment option for individuals experiencing both pain and depression by modulating BDNF expression.","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"8 1","pages":"165-179"},"PeriodicalIF":2.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses. 暴露于闪烁蓝光的小鼠视网膜结构和功能的变化:视网膜电图和光学相干断层扫描分析。
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-06-30 DOI: 10.5607/en24011
Yan Zhang, Sun-Sook Paik, In-Beom Kim
{"title":"Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses.","authors":"Yan Zhang, Sun-Sook Paik, In-Beom Kim","doi":"10.5607/en24011","DOIUrl":"10.5607/en24011","url":null,"abstract":"<p><p>The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m<sup>2</sup> (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 3","pages":"152-164"},"PeriodicalIF":1.8,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Egocentric 3D Skeleton Learning in a Deep Neural Network Encodes Obese-like Motion Representations. 在深度神经网络中进行以自我为中心的三维骨架学习,可编码类似肥胖的运动表象。
IF 1.8 4区 医学
Experimental Neurobiology Pub Date : 2024-06-30 DOI: 10.5607/en24008
Jea Kwon, Moonsun Sa, Hyewon Kim, Yejin Seong, C Justin Lee
{"title":"Egocentric 3D Skeleton Learning in a Deep Neural Network Encodes Obese-like Motion Representations.","authors":"Jea Kwon, Moonsun Sa, Hyewon Kim, Yejin Seong, C Justin Lee","doi":"10.5607/en24008","DOIUrl":"10.5607/en24008","url":null,"abstract":"<p><p>Obesity is a growing health concern, mainly caused by poor dietary habits. Yet, accurately tracking the diet and food intake of individuals with obesity is challenging. Although 3D motion capture technology is becoming increasingly important in healthcare, its potential for detecting early signs of obesity has not been fully explored. In this research, we used a deep LSTM network trained with individual identity (identity-trained deep LSTM network) to analyze 3D time-series skeleton data from mouse models with diet-induced obesity. First, we analyzed the data from two different viewpoints: allocentric and egocentric. Second, we trained various deep recurrent networks (e.g., RNN, GRU, LSTM) to predict the identity. Lastly, we tested whether these models effectively encode obese-like motion representations by training a support vector classifier with the latent features from the last layer. Our experimental results indicate that the optimal performance is achieved when utilizing an identity-trained deep LSTM network in conjunction with an egocentric viewpoint. This approach suggests a new way to use deep learning to spot health risks in mouse models of obesity and should be useful for detecting early signs of obesity in humans.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 3","pages":"119-128"},"PeriodicalIF":1.8,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信