{"title":"Robust Neuroprotection by NEMO (IKKγ)-binding Domain Peptide via Anti-inflammatory Effects in the Post-ischemic Brain.","authors":"Sang-A Oh, Song-I Seol, Ja-Kyeong Lee, Il-Doo Kim","doi":"10.5607/en25020","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia exhibit a complex and context-dependent role in the post-ischemic brain, performing both neuroprotective and neurotoxic functions. Among the many factors contributing to pro-inflammatory microglia activation, NF-κB signaling plays a pivotal role. The NEMO (IKKγ)-binding domain (NBD) peptide, an 11-amino-acids cell-permeable peptide spanning the NBD of IKKα and IKKβ, acts as a highly specific inhibitor by preventing NEMO-IKKα/IKKβ complex formation. We investigated the neuroprotective effects of the NBD peptide in a post-ischemic brain using a transient middle cerebral artery occlusion (MCAO) animal model. In <i>in vitro</i> experiments, pre-treatment of BV2 cells (a microglia cell line) with NBD peptide significantly suppressed LPS-induced NEMO-IKKα/IKKβ complex formation, nuclear translocation of p65, and upregulation of numerous pro-inflammatory cytokines expressions. The anti-inflammatory effect was further confirmed in reporter gene assay following reporter plasmid transfection, demonstrating a NBD peptide dose-dependent response. In the post-ischemic brain, intranasal delivery of NBD peptide significantly suppressed NEMO-IKKα/IKKβ complex formation, IκB-α phosphorylation, microglial activation, and cytokine induction. Notably, intranasal administration of NBD peptide 3 h post-MCAO significantly reduced infarct volumes in a dose-dependent manner. A significant reduction in infarct volume was observed by 6 h post-administration, suggesting an extended therapeutic window for the NBD peptide. These neuroprotective effects were accompanied by the attenuation of neurological deficits and motor function impairment, as assessed by rota-rod, beam balance, and corner turn tests. Collectively, these results highlight a robust neuroprotective effect along with long-term outcomes of NBD peptide in the post-ischemic brain, with NBD peptide-mediated blocking of NEMO-IKKα/IKKβ complex formation serving as a key underlying molecular mechanism.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"34 3","pages":"108-118"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en25020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia exhibit a complex and context-dependent role in the post-ischemic brain, performing both neuroprotective and neurotoxic functions. Among the many factors contributing to pro-inflammatory microglia activation, NF-κB signaling plays a pivotal role. The NEMO (IKKγ)-binding domain (NBD) peptide, an 11-amino-acids cell-permeable peptide spanning the NBD of IKKα and IKKβ, acts as a highly specific inhibitor by preventing NEMO-IKKα/IKKβ complex formation. We investigated the neuroprotective effects of the NBD peptide in a post-ischemic brain using a transient middle cerebral artery occlusion (MCAO) animal model. In in vitro experiments, pre-treatment of BV2 cells (a microglia cell line) with NBD peptide significantly suppressed LPS-induced NEMO-IKKα/IKKβ complex formation, nuclear translocation of p65, and upregulation of numerous pro-inflammatory cytokines expressions. The anti-inflammatory effect was further confirmed in reporter gene assay following reporter plasmid transfection, demonstrating a NBD peptide dose-dependent response. In the post-ischemic brain, intranasal delivery of NBD peptide significantly suppressed NEMO-IKKα/IKKβ complex formation, IκB-α phosphorylation, microglial activation, and cytokine induction. Notably, intranasal administration of NBD peptide 3 h post-MCAO significantly reduced infarct volumes in a dose-dependent manner. A significant reduction in infarct volume was observed by 6 h post-administration, suggesting an extended therapeutic window for the NBD peptide. These neuroprotective effects were accompanied by the attenuation of neurological deficits and motor function impairment, as assessed by rota-rod, beam balance, and corner turn tests. Collectively, these results highlight a robust neuroprotective effect along with long-term outcomes of NBD peptide in the post-ischemic brain, with NBD peptide-mediated blocking of NEMO-IKKα/IKKβ complex formation serving as a key underlying molecular mechanism.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.