Katherine Chang, Zulfeqhar Syed, Valentina Baena, Mark R Cookson, Changyoun Kim
{"title":"The Neurotoxic Properties of α-synuclein Polymorphs.","authors":"Katherine Chang, Zulfeqhar Syed, Valentina Baena, Mark R Cookson, Changyoun Kim","doi":"10.5607/en25016","DOIUrl":null,"url":null,"abstract":"<p><p>Progressive neurodegeneration is a common pathological feature of synucleinopathies, which include dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple system atrophy (MSA). Among mechanisms known to induce neurodegeneration, the presence of aggregated forms of α-synuclein (α-syn) has been extensively considered as a causal factor for cell death. These aggregates exist in multiple different physical forms, which might yield different disease phenotypes and explain the heterogeneity among these diseases. Here, we investigated the neurotoxic properties of structurally distinct and exogenous α-syn polymorphs. Most of the polymorphs at the concentrations we studied are neurotoxic, but dopamine stabilized α-syn oligomer induced greater levels of neurotoxicity at lower concentrations compared to other polymorphs. In addition, polymorphs commonly induced apoptotic neuronal death through autophagic impairment. Our results suggest that neurons have different sensitivities to different α-syn aggregates, which should be a consideration when developing disease markers and therapeutics.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"34 3","pages":"87-94"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en25016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Progressive neurodegeneration is a common pathological feature of synucleinopathies, which include dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple system atrophy (MSA). Among mechanisms known to induce neurodegeneration, the presence of aggregated forms of α-synuclein (α-syn) has been extensively considered as a causal factor for cell death. These aggregates exist in multiple different physical forms, which might yield different disease phenotypes and explain the heterogeneity among these diseases. Here, we investigated the neurotoxic properties of structurally distinct and exogenous α-syn polymorphs. Most of the polymorphs at the concentrations we studied are neurotoxic, but dopamine stabilized α-syn oligomer induced greater levels of neurotoxicity at lower concentrations compared to other polymorphs. In addition, polymorphs commonly induced apoptotic neuronal death through autophagic impairment. Our results suggest that neurons have different sensitivities to different α-syn aggregates, which should be a consideration when developing disease markers and therapeutics.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.