{"title":"MBD2抑制剂KCC-07扩大DNA损伤诱导试剂对神经肿瘤细胞的治疗窗口","authors":"Darom Lee, Junyoung Kim, Keeeun Kim, Youngsoo Lee","doi":"10.5607/en25017","DOIUrl":null,"url":null,"abstract":"<p><p>Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors. KCC-07 treatment reduced proliferation rates of U-87MG (glioma cell line) and SH-SY5Y (neuroblastoma cell line). p53 stabilization occurred in these cell lines without significantly affecting programmed cell death factors under KCC-07 exposure. Furthermore, tumor cell growth inhibition was enhanced when combined with DNA damaging reagents. Both phleomycin (radiomimetic agent inducing DNA double strand breaks) and etoposide (topoisomerase II inhibitor inducing DNA double strand breaks) treatment activated p53-dependent signaling for apoptosis and cell cycle arrest, consequently suppressing tumor cell growth. Dual treatment with KCC-07 (epigenetic modifier) and DNA damaging reagents augmented tumor cell suppression, suggesting greater benefits of combinatorial therapy for neural tumors than previously demonstrated.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"34 4","pages":"138-146"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426421/pdf/","citationCount":"0","resultStr":"{\"title\":\"KCC-07, MBD2 Inhibitor, Expands the Therapeutic Window of DNA Damage Inducing Reagents in Neural Tumor Cells.\",\"authors\":\"Darom Lee, Junyoung Kim, Keeeun Kim, Youngsoo Lee\",\"doi\":\"10.5607/en25017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors. KCC-07 treatment reduced proliferation rates of U-87MG (glioma cell line) and SH-SY5Y (neuroblastoma cell line). p53 stabilization occurred in these cell lines without significantly affecting programmed cell death factors under KCC-07 exposure. Furthermore, tumor cell growth inhibition was enhanced when combined with DNA damaging reagents. Both phleomycin (radiomimetic agent inducing DNA double strand breaks) and etoposide (topoisomerase II inhibitor inducing DNA double strand breaks) treatment activated p53-dependent signaling for apoptosis and cell cycle arrest, consequently suppressing tumor cell growth. Dual treatment with KCC-07 (epigenetic modifier) and DNA damaging reagents augmented tumor cell suppression, suggesting greater benefits of combinatorial therapy for neural tumors than previously demonstrated.</p>\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":\"34 4\",\"pages\":\"138-146\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en25017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en25017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
KCC-07, MBD2 Inhibitor, Expands the Therapeutic Window of DNA Damage Inducing Reagents in Neural Tumor Cells.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors. KCC-07 treatment reduced proliferation rates of U-87MG (glioma cell line) and SH-SY5Y (neuroblastoma cell line). p53 stabilization occurred in these cell lines without significantly affecting programmed cell death factors under KCC-07 exposure. Furthermore, tumor cell growth inhibition was enhanced when combined with DNA damaging reagents. Both phleomycin (radiomimetic agent inducing DNA double strand breaks) and etoposide (topoisomerase II inhibitor inducing DNA double strand breaks) treatment activated p53-dependent signaling for apoptosis and cell cycle arrest, consequently suppressing tumor cell growth. Dual treatment with KCC-07 (epigenetic modifier) and DNA damaging reagents augmented tumor cell suppression, suggesting greater benefits of combinatorial therapy for neural tumors than previously demonstrated.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.