{"title":"Bebtelovimab-bound SARS-CoV-2 RBD mutants: resistance profiling and validation with escape mutations, clinical results, and viral genome sequences","authors":"Khushboo Bhagat, Shweata Maurya, Amar Jeet Yadav, Timir Tripathi, Aditya K. Padhi","doi":"10.1002/1873-3468.14990","DOIUrl":"10.1002/1873-3468.14990","url":null,"abstract":"<p>The dynamic evolution of SARS-CoV-2 variants necessitates ongoing advancements in therapeutic strategies. Despite the promise of monoclonal antibody (mAb) therapies like bebtelovimab, concerns persist regarding resistance mutations, particularly single-to-multipoint mutations in the receptor-binding domain (RBD). Our study addresses this by employing interface-guided computational protein design to predict potential bebtelovimab-resistance mutations. Through extensive physicochemical analysis, mutational preferences, precision-recall metrics, protein–protein docking, and energetic analyses, combined with all-atom, and coarse-grained molecular dynamics (MD) simulations, we elucidated the structural-dynamics-binding features of the bebtelovimab–RBD complexes. Identification of susceptible RBD residues under positive selection pressure, coupled with validation against bebtelovimab-escape mutations, clinically reported resistance mutations, and viral genomic sequences enhances the translational significance of our findings and contributes to a better understanding of the resistance mechanisms of SARS-CoV-2.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-08-06DOI: 10.1002/1873-3468.14991
Elisabetta Citterio, Antonella Ellena Ronchi
{"title":"Deubiquitinases at the interplay between hematopoietic stem cell aging and myelodysplastic transformation.","authors":"Elisabetta Citterio, Antonella Ellena Ronchi","doi":"10.1002/1873-3468.14991","DOIUrl":"https://doi.org/10.1002/1873-3468.14991","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSC) maintain blood production throughout life. Nevertheless, HSC functionality deteriorates upon physiological aging leading to the increased prevalence of haematological diseases and hematopoietic malignancies in the elderly. Deubiquitinating enzymes (DUBs) by reverting protein ubiquitination ensure proper proteostasis, a key process in HSC maintenance and fitness.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-08-04DOI: 10.1002/1873-3468.14992
Matilde Santos, Tânia Melo, Tatiana Maurício, Helena Ferreira, Pedro Domingues, Rosário Domingues
{"title":"The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases","authors":"Matilde Santos, Tânia Melo, Tatiana Maurício, Helena Ferreira, Pedro Domingues, Rosário Domingues","doi":"10.1002/1873-3468.14992","DOIUrl":"10.1002/1873-3468.14992","url":null,"abstract":"<p>Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14992","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-08-02DOI: 10.1002/1873-3468.14977
Tiago Bertola Lobato, Richelieau Manoel, Ana Carolina Gomes Pereira, Ilana Souza Correa, Patrícia Nancy Iser-Bem, Elvirah Samantha de Sousa Santos, Joice Naiara Bertaglia Pereira, Maria Janaína Leite de Araújo, João Carlos de Oliveira Borges, Janaina Ribeiro Barbosa Pauferro, Vinicius Leonardo Sousa Diniz, Maria Vitória Martins Scervino, Tamires Duarte Serdan, Tania Cristina Pithon-Curi, Laureane Nunes Masi, Sandro Massao Hirabara, Rui Curi, Renata Gorjão
{"title":"Insulin resistance in nonobese type 2 diabetic Goto Kakizaki rats is associated with a proinflammatory T lymphocyte profile","authors":"Tiago Bertola Lobato, Richelieau Manoel, Ana Carolina Gomes Pereira, Ilana Souza Correa, Patrícia Nancy Iser-Bem, Elvirah Samantha de Sousa Santos, Joice Naiara Bertaglia Pereira, Maria Janaína Leite de Araújo, João Carlos de Oliveira Borges, Janaina Ribeiro Barbosa Pauferro, Vinicius Leonardo Sousa Diniz, Maria Vitória Martins Scervino, Tamires Duarte Serdan, Tania Cristina Pithon-Curi, Laureane Nunes Masi, Sandro Massao Hirabara, Rui Curi, Renata Gorjão","doi":"10.1002/1873-3468.14977","DOIUrl":"10.1002/1873-3468.14977","url":null,"abstract":"<p>Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-07-30DOI: 10.1002/1873-3468.14989
Laura Torella, Nerea Santana-Gonzalez, Nerea Zabaleta, Gloria Gonzalez Aseguinolaza
{"title":"Gene editing in liver diseases","authors":"Laura Torella, Nerea Santana-Gonzalez, Nerea Zabaleta, Gloria Gonzalez Aseguinolaza","doi":"10.1002/1873-3468.14989","DOIUrl":"10.1002/1873-3468.14989","url":null,"abstract":"<p>The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling <i>in vivo</i> modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14989","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-07-26DOI: 10.1002/1873-3468.14983
Tianlong He, Cuicui Ji, Wenting Zhang, Xianghua Li, Yukun Liu, Xiaoli Wang, Haolin Zhang, Juan Wang
{"title":"The COPII coat protein SEC24D is required for autophagosome closure in mammals.","authors":"Tianlong He, Cuicui Ji, Wenting Zhang, Xianghua Li, Yukun Liu, Xiaoli Wang, Haolin Zhang, Juan Wang","doi":"10.1002/1873-3468.14983","DOIUrl":"https://doi.org/10.1002/1873-3468.14983","url":null,"abstract":"<p><p>Macroautophagy involves the encapsulation of cellular components within double-membrane autophagosomes for subsequent degradation in vacuoles or lysosomes. Coat protein complex II (COPII) vesicles serve as a membrane source for autophagosome formation. However, the specific role of SEC24D, an isoform of the COPII coat protein SEC24, in the macroautophagy pathway remains unclear. In this study, we demonstrate that SEC24D is indispensable for macroautophagy and important for autophagosome closure. Depletion of SEC24D leads to the accumulation of unsealed isolation membranes. Furthermore, under conditions of starvation, SEC24D interacts with casein kinase1 delta (CK1δ), a member of the casein kinase 1 family, and autophagy-related 9A (ATG9A). Collectively, our findings unveil the indispensable role of SEC24D in starvation-induced autophagy in mammalian cells.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-07-25DOI: 10.1002/1873-3468.14987
Rachel H Wyetzner, Ella X Segal, Anna R Jussila, Radhika P Atit
{"title":"Topographical changes in extracellular matrix during skin fibrosis and recovery can be evaluated using automated image analysis algorithms.","authors":"Rachel H Wyetzner, Ella X Segal, Anna R Jussila, Radhika P Atit","doi":"10.1002/1873-3468.14987","DOIUrl":"10.1002/1873-3468.14987","url":null,"abstract":"<p><p>Skin fibrosis is characterized by fibroblast activation and intradermal fat loss, resulting in excess deposition and remodeling of dermal extracellular matrix (ECM). The topography of the dominant ECM proteins, such as collagens, can indicate skin stiffness and remains understudied in evaluating fibrotic skin. Here, we adapted two different unbiased image analysis algorithms to define collagen topography and alignment in a genetically inducible and reversible Wnt activation fibrosis model. We demonstrated that Wnt-activated fibrotic skin has altered collagen fiber characteristics and a loss of collagen alignment, which were restored in the reversible model. This study highlights how unbiased algorithms can be used to analyze ECM topography, providing novel avenues to evaluate fibrotic skin onset, recovery, and treatment.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-07-24DOI: 10.1002/1873-3468.14985
Eirini Sofia Fasouli, Eleni Katsantoni
{"title":"Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia.","authors":"Eirini Sofia Fasouli, Eleni Katsantoni","doi":"10.1002/1873-3468.14985","DOIUrl":"https://doi.org/10.1002/1873-3468.14985","url":null,"abstract":"<p><p>In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FEBS LettersPub Date : 2024-07-23DOI: 10.1002/1873-3468.14988
Thomas Hunt, Matthew G Pontifex, David Vauzour
{"title":"(Poly)phenols and brain health - beyond their antioxidant capacity.","authors":"Thomas Hunt, Matthew G Pontifex, David Vauzour","doi":"10.1002/1873-3468.14988","DOIUrl":"https://doi.org/10.1002/1873-3468.14988","url":null,"abstract":"<p><p>(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mice deficient in the phosphatase activity of sEH show decreased levels of the endocannabinoid 2-AG in the olfactory bulb and depressive-like behavior.","authors":"Ami Oguro, Yurino Kaga, Hideaki Sato, Taichi Fujiyama, Shinji Fujimoto, Saki Nagai, Makoto Matsuyama, Masatsugu Miyara, Yasuhiro Ishihara, Takeshi Yamazaki, Susumu Imaoka, Yaichiro Kotake","doi":"10.1002/1873-3468.14984","DOIUrl":"https://doi.org/10.1002/1873-3468.14984","url":null,"abstract":"<p><p>Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}