Evolution & Development最新文献

筛选
英文 中文
Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton 表观遗传学和形态进化:染色质修饰的实验操作会导致颅面骨骼发生物种特异性变化。
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-10-18 DOI: 10.1111/ede.12461
Leah DeLorenzo, Kara E. Powder
{"title":"Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton","authors":"Leah DeLorenzo,&nbsp;Kara E. Powder","doi":"10.1111/ede.12461","DOIUrl":"10.1111/ede.12461","url":null,"abstract":"<p>A central question in biology is the molecular origins of phenotypic diversity. While genetic changes are key to the genotype–phenotype relationship, alterations to chromatin structure and the physical packaging of histone proteins may also be important drivers of vertebrate divergence. We investigate the impact of such an epigenetic mechanism, histone acetylation, within a textbook example of an adaptive radiation. Cichlids of Lake Malawi have adapted diverse craniofacial structures, and here we investigate how histone acetylation influences morphological variation in these fishes. Specifically, we assessed the effect of inhibiting histone deacetylation using the drug trichostatin A (TSA) on developing facial structures. We examined this during three critical developmental windows in two cichlid species with alternate adult morphologies. Exposure to TSA during neural crest cell (NCC) migration and as postmigratory NCCs proliferate in the pharyngeal arches resulted in significant changes in lateral and ventral shape in <i>Maylandia</i>, but not in <i>Tropheops</i>. This included an overall shortening of the head, widening of the lower jaw, and steeper craniofacial profile, all of which are paedomorphic morphologies. In contrast, treatment with TSA during early chondrogenesis did not result in significant morphological changes in either species. Together, these data suggest a sensitivity to epigenetic alterations that are both time- and species-dependent. We find that morphologies are due to nonautonomous or potentially indirect effects on NCC development, including in part a global developmental delay. Our research bolsters the understanding that proper histone acetylation is essential for early craniofacial development and identifies a species-specific robustness to developmental change. Overall, this study demonstrates how epigenetic regulation may play an important role in both generating and buffering morphological variation.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regionalization of the vertebral column and its correlation with heart position in snakes: Implications for evolutionary pathways and morphological diversification 蛇脊椎的区域化及其与心脏位置的相关性:对进化途径和形态多样性的启示。
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-10-07 DOI: 10.1111/ede.12460
Paul M. Hampton, Jesse M. Meik
{"title":"Regionalization of the vertebral column and its correlation with heart position in snakes: Implications for evolutionary pathways and morphological diversification","authors":"Paul M. Hampton,&nbsp;Jesse M. Meik","doi":"10.1111/ede.12460","DOIUrl":"10.1111/ede.12460","url":null,"abstract":"<p>Spinal regionalization has important implications for the evolution of vertebrate body plans. We determined the variation in the number and morphology of vertebrae across the vertebral column (i.e., vertebral formula) for 63 snake species representing 13 families using intracolumnar variation in vertebral shape. Vertebral counts were used to determine the position of the heart, pylorus, and left kidney for each species. Across all species we observed a conspicuous midthoracic transition in vertebral shape, indicating four developmental domains of the precloacal vertebral column (cervical, anterior thoracic, posterior thoracic, and lumbar). Using phylogenetic analyses, the boundary between the anterior and posterior thoracic vertebrae was correlated with heart position. No associations were found between shifts in morphology of the vertebral column and either the pylorus or left kidney. We observed that among taxa, the number of preapex and postapex vertebrae could change independently from one another and from changes in the total number of precloacal vertebrae. Ancestral state reconstruction of the preapex and postapex vertebrae illustrated several evolutionary pathways by which diversity in the vertebral column and heart position have been attained. In addition, no conspicuous pattern was observed among the heart, pylorus, or kidney indicating that their relative positions to each other evolve independently. We conclude that snakes exhibit four morphologically distinct regions of the vertebral column. We discuss the implications of the forebody and hindbody vertebral formula on the morphological diversification of snakes.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41119005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging trends in the study of spiralian larvae 螺旋幼虫研究的新趋势。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2023-10-03 DOI: 10.1111/ede.12459
Yan Liang, Allan M. Carrillo-Baltodano, José M. Martín-Durán
{"title":"Emerging trends in the study of spiralian larvae","authors":"Yan Liang,&nbsp;Allan M. Carrillo-Baltodano,&nbsp;José M. Martín-Durán","doi":"10.1111/ede.12459","DOIUrl":"10.1111/ede.12459","url":null,"abstract":"<p>Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41109002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental and genomic insight into the origin of the tardigrade body plan 从发育和基因组学角度洞察沙蜥身体结构的起源。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2023-09-18 DOI: 10.1111/ede.12457
Frank W. Smith, Mandy Game, Marc A. Mapalo, Raul A. Chavarria, Taylor R. Harrison, Ralf Janssen
{"title":"Developmental and genomic insight into the origin of the tardigrade body plan","authors":"Frank W. Smith,&nbsp;Mandy Game,&nbsp;Marc A. Mapalo,&nbsp;Raul A. Chavarria,&nbsp;Taylor R. Harrison,&nbsp;Ralf Janssen","doi":"10.1111/ede.12457","DOIUrl":"10.1111/ede.12457","url":null,"abstract":"<p>Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of <i>Echiniscus testudo</i>, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12457","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10653433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agency in living systems 生命系统中的能动性。
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-09-15 DOI: 10.1111/ede.12458
Armin P. Moczek, Sonia E. Sultan
{"title":"Agency in living systems","authors":"Armin P. Moczek,&nbsp;Sonia E. Sultan","doi":"10.1111/ede.12458","DOIUrl":"10.1111/ede.12458","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 6","pages":"331-334"},"PeriodicalIF":2.9,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10609503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue information – TOC & Editorial and Subscription Page 问题信息-目录和编辑与订阅页面
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-09-12 DOI: 10.1111/ede.12406
{"title":"Issue information – TOC & Editorial and Subscription Page","authors":"","doi":"10.1111/ede.12406","DOIUrl":"https://doi.org/10.1111/ede.12406","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 4-5","pages":"255-256"},"PeriodicalIF":2.9,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12406","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50130699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae 以腹足类 Lottia peitaihoensis 为模型,研究蹄足类幼虫的身体形态。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2023-09-04 DOI: 10.1111/ede.12456
Pin Huan, Baozhong Liu
{"title":"The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae","authors":"Pin Huan,&nbsp;Baozhong Liu","doi":"10.1111/ede.12456","DOIUrl":"10.1111/ede.12456","url":null,"abstract":"<p>The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing “typical” trochophore larvae. In recent years, we developed a potential model system using the patellogastropod <i>Lottia peitaihoensis</i> (= <i>Lottia goshimai</i>). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central Asia revealed as a key area in evolution of Eremurus (Asphodelaceae). 中亚被揭示为 Eremurus(天南星科)进化的关键地区。
IF 4.8 3区 生物学
Evolution & Development Pub Date : 2023-09-02 eCollection Date: 2024-05-01 DOI: 10.1016/j.pld.2023.08.004
Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun
{"title":"Central Asia revealed as a key area in evolution of <i>Eremurus</i> (Asphodelaceae).","authors":"Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun","doi":"10.1016/j.pld.2023.08.004","DOIUrl":"10.1016/j.pld.2023.08.004","url":null,"abstract":"<p><p><i>Eremurus</i> was described at the beginning of the 19th century. However, due to limited sampling and the small number of gene markers to date, its phylogeny and evolution are largely unknown. In this study, we analyzed plastomes from 27 species belonging to 2 subgenera and 3 sections of <i>Eremurus</i>, which are found in Central Asia (its center of diversity) and China. We also analyzed nuclear DNA ITS of 33 species, encompassing all subgenera and sections of the genus in Central Asia, southwest Asia and China. Our findings revealed that the genus was monophyletic, although both subgenera <i>Eremurus</i> and <i>Henningia</i> were found to be paraphyletic. Both plastome and nrDNA-based phylogenetic trees had three clades that did not reflect the current taxonomy of the genus. Our biogeographical and time-calibrated trees suggest that <i>Eremurus</i> originated in the ancient Tethyan area in the second half of the Eocene. Diversification of <i>Eremurus</i> occurred from the early Oligocene to the late Miocene. Paratethys Sea retreat and several orogenetic events, such as the progressive uplift of the Qinghai-Tibet Plateau and surrounding mountain belts (Altai, Pamir, Tian Shan), caused serious topographic and climate (aridification) changes in Central Asia that may have triggered a split of clades and speciation. In this transformed Central Asia, speciation proceeded rapidly driven mainly by vicariance caused by numerous mountain chains and specialization to a variety of climatic, topographic and soil conditions that exist in this region.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"3 1","pages":"333-343"},"PeriodicalIF":4.8,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79718204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speciation and development 物种形成与发展
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-08-06 DOI: 10.1111/ede.12454
Asher D. Cutter
{"title":"Speciation and development","authors":"Asher D. Cutter","doi":"10.1111/ede.12454","DOIUrl":"10.1111/ede.12454","url":null,"abstract":"<p>Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve <i>cis</i>- and <i>trans</i>-acting gene regulatory change, protein–protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's “mystery of mysteries,” this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 4-5","pages":"289-327"},"PeriodicalIF":2.9,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism 骨钙化率作为鲑科鱼类颅面转化的一个因素:从钙代谢激素治疗实验的见解
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2023-08-04 DOI: 10.1111/ede.12453
Grigorii N. Markevich, Nadezhda S. Pavlova, Daria V. Kapitanova, Evgeny V. Esin
{"title":"Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism","authors":"Grigorii N. Markevich,&nbsp;Nadezhda S. Pavlova,&nbsp;Daria V. Kapitanova,&nbsp;Evgeny V. Esin","doi":"10.1111/ede.12453","DOIUrl":"10.1111/ede.12453","url":null,"abstract":"<p>Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 4-5","pages":"274-288"},"PeriodicalIF":2.9,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信