Evolution & Development最新文献

筛选
英文 中文
From two segments and beyond: Investigating the onset of regeneration in Syllis malaquini 从两节到更长:调查马拉喹鲤的再生起始阶段。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-10-15 DOI: 10.1111/ede.12492
Vanessa Spieß, Rannyele P. Ribeiro, Conrad Helm, M. Teresa Aguado
{"title":"From two segments and beyond: Investigating the onset of regeneration in Syllis malaquini","authors":"Vanessa Spieß,&nbsp;Rannyele P. Ribeiro,&nbsp;Conrad Helm,&nbsp;M. Teresa Aguado","doi":"10.1111/ede.12492","DOIUrl":"10.1111/ede.12492","url":null,"abstract":"<p>Annelids feature a diverse range of regenerative abilities, but complete whole-body regeneration is less common, particularly in the context of the head and anterior body regeneration. This study provides a detailed morphological description of <i>Syllis malaquini</i> regenerative abilities. By replicating previous experiments and performing diverse surgical procedures, we explored the capacity of this species for whole-body regeneration. We detailed the precise timing of regeneration of particular structures such as the eyes, proventricle, pharyngeal tooth, nuchal organs, and body pigmentation after amputation. Our high-resolution scanning electron microscopy and confocal laser-scanning microscopy images provide details of the blastema region, revealing that while anal opening remains in connection to the exterior environment, oral opening is formed “<i>de novo</i>” during blastema differentiation. Additionally, we performed amputations to isolate fragments consisting of one, two, and three segments from the intestinal trunk region. We found that <i>S. malaquini</i> requires at least two to three segments to successfully regenerate the whole body. In addition, we verified a variable capacity to regenerate depending upon the gut region, with structures of the foregut greatly impairing some steps of the regenerative process. Our work notably addresses the gap in knowledge concerning gut formation and its impact on regenerative capabilities. Ongoing research is crucial to unravel the role of gut tissue specificity and plasticity during regeneration in annelids, and particularly in syllids.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia 南澳大利亚埃迪卡拉纪一种新的运动动物,对轴向极性的进化具有重要意义。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-09-03 DOI: 10.1111/ede.12491
Scott D. Evans, Ian V. Hughes, Emily B. Hughes, Peter W. Dzaugis, Matthew P. Dzaugis, James G. Gehling, Diego C. García-Bellido, Mary L. Droser
{"title":"A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia","authors":"Scott D. Evans,&nbsp;Ian V. Hughes,&nbsp;Emily B. Hughes,&nbsp;Peter W. Dzaugis,&nbsp;Matthew P. Dzaugis,&nbsp;James G. Gehling,&nbsp;Diego C. García-Bellido,&nbsp;Mary L. Droser","doi":"10.1111/ede.12491","DOIUrl":"10.1111/ede.12491","url":null,"abstract":"<p>Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, <i>Quaestio simpsonorum</i> gen. et sp. nov. from the Ediacaran of South Australia. <i>Quaestio</i> is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that <i>Quaestio</i> was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution 雌性壁虎体型二形的复杂发育过程:确定性生长对蜥蜴体型和生活史进化的影响。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-08-11 DOI: 10.1111/ede.12490
Brandon Meter, Lukáš Kratochvíl, Zuzana Starostová, Tomáš Kučera, Lukáš Kubička
{"title":"Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution","authors":"Brandon Meter,&nbsp;Lukáš Kratochvíl,&nbsp;Zuzana Starostová,&nbsp;Tomáš Kučera,&nbsp;Lukáš Kubička","doi":"10.1111/ede.12490","DOIUrl":"10.1111/ede.12490","url":null,"abstract":"<p>Ectothermic vertebrates such as reptiles were assumed to be indeterminate growers, which means that there is no terminal point in time or size for growth in their lifetime. In recent years, evidence for the determinate nature of growth in lizards has accumulated, necessitating a re-examination of models of their ontogeny and evolution of sexual size dimorphism (SSD). In the female-larger gecko <i>Paroedura vazimba</i>, we monitored post-embryonic growth over a period of 15 months. After hatching, females grew faster than males but also reached their final body size, that is, closed growth of their vertebrae, earlier than males. The closure of bone growth in females correlates with the onset of reproductive maturation. We compared this pattern with the previously minutely studied, male-larger species <i>Paroedura picta</i>, where we documented determinate growth as well. We propose a model to explain the evolutionary switches in the direction of SSD in lizards based on bipotential effects of ovarian hormones on growth. In this model, male growth is assumed to require no male-specific growth modifier, such as sex-limited hormonal regulators, while growth is feminized by ovarian hormones in females. Low levels of ovarian hormones can promote bone growth, but high levels associated with maturation of the reproductive organs promote senescence of bone growth plates and thus cessation of bone growth. We suggest that models on growth, life-history and evolution of body size in many lizards should acknowledge their determinate nature of growth.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Old hypotheses and theories at the heart of current evo-devo research 当前进化-胚胎研究核心的旧假说和理论。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-06-26 DOI: 10.1111/ede.12487
Cédric Finet, Ferdinand Marlétaz
{"title":"Old hypotheses and theories at the heart of current evo-devo research","authors":"Cédric Finet,&nbsp;Ferdinand Marlétaz","doi":"10.1111/ede.12487","DOIUrl":"10.1111/ede.12487","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The development of extremely large male genitalia under spatial limitation 空间限制下的超大型雄性生殖器的发育。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-06-26 DOI: 10.1111/ede.12488
Karen Terada, Chinami Furumoto, Taira Nishimura, Akihiro Hirayama, Yasuoki Takami
{"title":"The development of extremely large male genitalia under spatial limitation","authors":"Karen Terada,&nbsp;Chinami Furumoto,&nbsp;Taira Nishimura,&nbsp;Akihiro Hirayama,&nbsp;Yasuoki Takami","doi":"10.1111/ede.12488","DOIUrl":"10.1111/ede.12488","url":null,"abstract":"<p>Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus <i>Ohomopterus</i> (genus <i>Carabus</i>) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of <i>Carabus uenoi</i> by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of <i>C. uenoi</i>, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetic determination of alternate stages in polyphenic insects 多肉昆虫交替阶段的遗传决定。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-06-12 DOI: 10.1111/ede.12485
Deniz Erezyilmaz
{"title":"The genetic determination of alternate stages in polyphenic insects","authors":"Deniz Erezyilmaz","doi":"10.1111/ede.12485","DOIUrl":"10.1111/ede.12485","url":null,"abstract":"<p>Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors <i>broad-complex</i> (<i>br</i>) and <i>Ecdysone inducible protein 93</i> (<i>E93</i>), respectively. A probable larval determinant, <i>chronologically inappropriate metamorphosis</i> (<i>chinmo</i>), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of <i>chinmo</i>, <i>br</i>, and <i>E93</i> underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how <i>chinmo</i>, <i>br</i>, and <i>E93</i> expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about <i>chinmo</i>, <i>br</i>, and <i>E93</i> function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation reprogramming in teleosts 鱼类的 DNA 甲基化重编程。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-05-23 DOI: 10.1111/ede.12486
Sébastien Matlosz, Sigríður R. Franzdóttir, Arnar Pálsson, Zophonías O. Jónsson
{"title":"DNA methylation reprogramming in teleosts","authors":"Sébastien Matlosz,&nbsp;Sigríður R. Franzdóttir,&nbsp;Arnar Pálsson,&nbsp;Zophonías O. Jónsson","doi":"10.1111/ede.12486","DOIUrl":"10.1111/ede.12486","url":null,"abstract":"<p>Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eye development influences horn size but not patterning in horned beetles 角甲虫的眼睛发育影响角的大小,但不影响角的形态。
IF 2.6 3区 生物学
Evolution & Development Pub Date : 2024-05-10 DOI: 10.1111/ede.12479
Kat Sestrick, Armin P. Moczek
{"title":"Eye development influences horn size but not patterning in horned beetles","authors":"Kat Sestrick,&nbsp;Armin P. Moczek","doi":"10.1111/ede.12479","DOIUrl":"10.1111/ede.12479","url":null,"abstract":"<p>Understanding the origin of novel morphological traits is a long-standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved and specific gene expression patterns in the embryonic development of tardigrades 沙蜥胚胎发育过程中的保守和特异基因表达模式。
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2024-04-24 DOI: 10.1111/ede.12476
Chaoran Li, Zhixiang Yang, Xiaofang Xu, Lingling Meng, Shihao Liu, Dong Yang
{"title":"Conserved and specific gene expression patterns in the embryonic development of tardigrades","authors":"Chaoran Li,&nbsp;Zhixiang Yang,&nbsp;Xiaofang Xu,&nbsp;Lingling Meng,&nbsp;Shihao Liu,&nbsp;Dong Yang","doi":"10.1111/ede.12476","DOIUrl":"10.1111/ede.12476","url":null,"abstract":"<p>Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species <i>Hypsibius exemplaris</i>. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of <i>H. exemplaris</i> corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with <i>Drosophila melanogaster</i> highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paired fins in vertebrate evolution and ontogeny 脊椎动物进化和个体发育过程中的配对鳍。
IF 2.9 3区 生物学
Evolution & Development Pub Date : 2024-04-22 DOI: 10.1111/ede.12478
Andrey V. Bayramov, Sergey A. Yastrebov, Dmitry N. Mednikov, Karina R. Araslanova, Galina V. Ermakova, Andrey G. Zaraisky
{"title":"Paired fins in vertebrate evolution and ontogeny","authors":"Andrey V. Bayramov,&nbsp;Sergey A. Yastrebov,&nbsp;Dmitry N. Mednikov,&nbsp;Karina R. Araslanova,&nbsp;Galina V. Ermakova,&nbsp;Andrey G. Zaraisky","doi":"10.1111/ede.12478","DOIUrl":"10.1111/ede.12478","url":null,"abstract":"<p>The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信