{"title":"四种远洋鱼类胚胎和早期幼体的端脑外翻。","authors":"Mónica Folgueira, Jonathan D. W. Clarke","doi":"10.1111/ede.12474","DOIUrl":null,"url":null,"abstract":"<p>The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker <i>zona occludens 1</i> to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (<i>Devario aequipinnatus</i>), blind cavefish (<i>Astyanax mexicanus</i>), medaka (<i>Oryzias latipes</i>), and paradise fish (<i>Macroposus opercularis</i>). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that <i>cyclops</i> mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12474","citationCount":"0","resultStr":"{\"title\":\"Telencephalic eversion in embryos and early larvae of four teleost species\",\"authors\":\"Mónica Folgueira, Jonathan D. W. Clarke\",\"doi\":\"10.1111/ede.12474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker <i>zona occludens 1</i> to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (<i>Devario aequipinnatus</i>), blind cavefish (<i>Astyanax mexicanus</i>), medaka (<i>Oryzias latipes</i>), and paradise fish (<i>Macroposus opercularis</i>). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that <i>cyclops</i> mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12474\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Telencephalic eversion in embryos and early larvae of four teleost species
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.