Estuaries and Coasts最新文献

筛选
英文 中文
Evaluating Hydrogeomorphic Condition Across Ecosystem States in a Non-tidal, Brackish Peat Marsh of the Florida Coastal Everglades, USA 评估美国佛罗里达州沿海大沼泽地非潮汐、咸水泥炭沼泽中不同生态系统状态下的水文地质状况
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-25 DOI: 10.1007/s12237-024-01364-5
Lukas Lamb-Wotton, Tiffany G. Troxler, Carlos Coronado-Molina, Stephen E. Davis, Daniel Gann, Khandker S. Ishtiaq, Sparkle L. Malone, Paulo Olivas, David T. Rudnick, Fred H. Sklar
{"title":"Evaluating Hydrogeomorphic Condition Across Ecosystem States in a Non-tidal, Brackish Peat Marsh of the Florida Coastal Everglades, USA","authors":"Lukas Lamb-Wotton, Tiffany G. Troxler, Carlos Coronado-Molina, Stephen E. Davis, Daniel Gann, Khandker S. Ishtiaq, Sparkle L. Malone, Paulo Olivas, David T. Rudnick, Fred H. Sklar","doi":"10.1007/s12237-024-01364-5","DOIUrl":"https://doi.org/10.1007/s12237-024-01364-5","url":null,"abstract":"<p>Emergent marsh and open water have been identified as alternate stable states in tidal marshes with large, relative differences in hydrogeomorphic conditions. In the Florida coastal Everglades, concern has been raised regarding the loss of non-tidal, coastal peat marsh via dieback of emergent vegetation and peat collapse. To aid in the identification of alternate stable states, our objective was to characterize the variability of hydrogeomorphic and biologic conditions using a field survey and long-term monitoring of hydrologic and geomorphic conditions across a range of vegetated (emergent, submerged) and unvegetated (open water) communities, which we refer to as “ecosystem states,” in a non-tidal, brackish peat marsh of the coastal Everglades. Results show (1) linear relationships among field-surveyed geomorphic, hydrologic, and biologic variables, with a 35-cm mean difference in soil surface elevation between emergent and open water states, (2) an overall decline in soil elevation in the submerged state that was related to cumulative dry days, and (3) a 2× increase in porewater salinity during the dry season in the emergent state that was also related to the number of dry days. Coupled with findings from previous experiments, we propose a conceptual model that describes how seasonal hydrologic variability may lead to ecosystem state transitions between emergent and open water alternate states. Since vegetative states are only moderately salt tolerant, as sea-level rise pushes the saltwater front inland, the importance of continued progress on Everglades restoration projects, with an aim to increase the volume of freshwater being delivered to coastal wetlands, is the primary management intervention available to mitigate salinization and slow ecosystem state shifts in non-tidal, brackish peat marshes.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"27 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Assessment of Coastal Vulnerability in the Bonny Bay: A Combination of Traditional Methods (Simple and AHP) and Machine Learning Approach 邦尼湾海岸脆弱性综合评估:传统方法(简单和 AHP)与机器学习方法的结合
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-25 DOI: 10.1007/s12237-024-01362-7
Njutapvoui F. Nourdi, Onguene Raphael, Mohammed Achab, Yap Loudi, Jean-Paul Rudant, Tomedi E. Minette, Pouwédéou Kambia, Ntonga Jean Claude, Ntchantcho Romaric
{"title":"Integrated Assessment of Coastal Vulnerability in the Bonny Bay: A Combination of Traditional Methods (Simple and AHP) and Machine Learning Approach","authors":"Njutapvoui F. Nourdi, Onguene Raphael, Mohammed Achab, Yap Loudi, Jean-Paul Rudant, Tomedi E. Minette, Pouwédéou Kambia, Ntonga Jean Claude, Ntchantcho Romaric","doi":"10.1007/s12237-024-01362-7","DOIUrl":"https://doi.org/10.1007/s12237-024-01362-7","url":null,"abstract":"<p>The coast of Cameroon, located at the bottom of the Gulf of Guinea, is confronted with coastal hazards whose magnitude, distribution, and consequences are currently largely underestimated if not poorly understood. This study aims to fill this gap by proposing an integrated approach to coastal vulnerability assessment, combining simple traditional methods, multicriteria AHP (analytic hierarchy process) analysis, and machine learning techniques. Using geospatial data, field observations, and numerical models, we assessed the 402-km Cameroon coastline, taking into account interactions between physical, geological, and socio-economic factors. The results highlight geomorphology, slope, coastal erosion, and population density as the main contributors to vulnerability. The Integrated Coastal Vulnerability Index (IVCI) calculated by the simple method shows variable levels of vulnerability, with a predominance of “very low” and “low” in the northern sectors (S1 = 58%, S2 = 99%, and S3 = 87%) and “high” and “very high” in the south (S4 = 58% and S5 = 61%). The AHP method reveals a more balanced distribution of vulnerability levels, highlighting a sector (S3 = 96%) at “very strong” and “strong” risk. The application of six machine learning algorithms shows good predictive capabilities for ICVI, with the exception of the support vector machine (SVM). The artificial neural network (ANN) algorithm stands out for its superior accuracy, with an <i>F</i>-score of 0.9, ability to explain data variance (<i>R</i> = 0.95), accurate predictions (RMSE = 0.2), and excellent ability to distinguish classes (kappa coefficient of 0.9 and ROC AUC of 0.9). This study emphasizes the magnitude and complexity of interactions as indicators of the susceptibility of coastal populations to vulnerability.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"15 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Spatial and Temporal Trends in Net Sediment Accumulation in Seagrass Meadows 表征海草草甸净沉积物累积的时空趋势
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-18 DOI: 10.1007/s12237-024-01365-4
Katherine A. Haviland, R. W. Howarth, M. Hayn, A. E. Giblin
{"title":"Characterizing Spatial and Temporal Trends in Net Sediment Accumulation in Seagrass Meadows","authors":"Katherine A. Haviland, R. W. Howarth, M. Hayn, A. E. Giblin","doi":"10.1007/s12237-024-01365-4","DOIUrl":"https://doi.org/10.1007/s12237-024-01365-4","url":null,"abstract":"<p>Seagrass meadows are known as hot spots for carbon accumulation, but there is limited field data on the variability of sediment accumulation across time and space. We developed a method to assess spatial and temporal heterogeneity in net sediment accumulation in seagrass meadows using small, inexpensive samplers, allowing for over 200 unique measurements across multiple transects within our study site. Using this method, we assessed sediment accumulation across seagrass meadow edges, and in varying weather conditions. We found the greatest accumulation of sediment 5 m outside of seagrass meadow edges, with sediment accumulation rates averaging just under 100 g m<sup>−2</sup> day<sup>−1</sup>, though rates were highly variable. Carbon accumulation from settled sediment was generally greater outside of seagrass meadow edges than within the bed, especially at sites undergoing recent expansion. Measurements made during tropical storms showed both scouring of sediment away from sites, and increased accumulation, depending on site properties as well as individual tropical storm characteristics. In the storm that had a measurable storm surge, scouring of sediment was a more dominant mechanism, whereas deposition dominated in the storm that had high winds but no associated storm surge. Our data demonstrate the necessity of including measurements that characterize both spatial and meteorological variability to develop a more holistic understanding of the movement of sediment and particulate organic carbon associated with seagrass meadows, especially as meadow area becomes increasingly fragmented with human activity and global change.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"33 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Influence on Feeding and Biodeposition Rates of Pacific Oysters (Crassostrea gigas) Throughout Its Culture Cycle in a Coastal Lagoon with Upwelling Influence 环境对受上升流影响的沿海泻湖中太平洋牡蛎(Crassostrea gigas)整个养殖周期的摄食和生物沉积率的影响
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-04 DOI: 10.1007/s12237-024-01357-4
G. Samperio-Ramos, C. Vidal-Nieves, Z. García-Esquivel, S. Z. Herzka, J. M. Sandoval-Gil, V. F. Camacho-Ibar
{"title":"Environmental Influence on Feeding and Biodeposition Rates of Pacific Oysters (Crassostrea gigas) Throughout Its Culture Cycle in a Coastal Lagoon with Upwelling Influence","authors":"G. Samperio-Ramos, C. Vidal-Nieves, Z. García-Esquivel, S. Z. Herzka, J. M. Sandoval-Gil, V. F. Camacho-Ibar","doi":"10.1007/s12237-024-01357-4","DOIUrl":"https://doi.org/10.1007/s12237-024-01357-4","url":null,"abstract":"<p>Suspended oysters employ physiological strategies to adjust their metabolic needs with the available food resources. Using the biodeposition method, the feeding and processing behavior of Pacific oysters (<i>Crassostrea gigas</i>) was investigated with a field study comparing four periods (May, July, October, and December 2016) with different upwelling intensities in the coastal lagoon of San Quintin Bay (Mexico). We calculated physiological feeding responses throughout the culture cycle, including the clearance rate (CR), filtration rate (FR), net organic ingestion rate (NOIR), net organic absorption rate (NOAR), net organic selection efficiency, net absorption efficiency, and the ammonium excretion rate (AER). The dietary quality predictors showed large fluctuations in terms of total particulate material, organic fraction of seston, and chlorophyll concentration. Unlike the pumping activity, FR, NOIR, and NOAR were related to upwelling conditions, and <i>C. gigas</i> removed twofold, ingested fourfold, and assimilated fivefold more of the organic suspended material during the upwelling season compared with periods of weak upwelling. <i>C. gigas</i> showed the potential of depositing nearly twice the organic biodeposits to the sediments during the intense upwelling events. The highest AER was recorded in July and October, suggesting that seasonal temperature variation is the most important exogenous factor regulating nitrogen metabolism, even in a subtropical environment. Also, mechanistic models incorporating dietary quality predictors to the feeding and processing response functions of <i>C. gigas</i> were performed. We conclude that coastal upwelling plays an important bottom-up control on oysters’ feeding and processing activity, and our results facilitate further studies of the carrying capacity of embayments influenced by eastern boundary current systems.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Watershed Properties Cannot Explain Divergent Dynamics of Pacific Herring in an Urbanizing Estuary 局部流域特性无法解释城市化河口太平洋鲱鱼的差异动态
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-04 DOI: 10.1007/s12237-024-01355-6
Leah R. Davis, Fabienne Urfer, Timothy E. Essington, Blake E. Feist, Tessa B. Francis
{"title":"Local Watershed Properties Cannot Explain Divergent Dynamics of Pacific Herring in an Urbanizing Estuary","authors":"Leah R. Davis, Fabienne Urfer, Timothy E. Essington, Blake E. Feist, Tessa B. Francis","doi":"10.1007/s12237-024-01355-6","DOIUrl":"https://doi.org/10.1007/s12237-024-01355-6","url":null,"abstract":"<p>Pacific herring (<i>Clupea pallasii</i>) is a foundational species in Puget Sound (Washington State, U.S.A.) and is subject to many anthropogenic threats. We assessed the overall status of the Puget Sound Pacific herring sub-stock complex and asked whether watersheds with less urban or agricultural land cover, less impervious surface, and lower human density were associated with better stock status. To this end, we developed multiple metrics of sub-stock population status; characterized watershed properties with respect to land use/land cover, percent impervious surfaces, and human density; and used statistical model selection to evaluate the weight of evidence in support of our hypotheses. Overall, the status of sub-stocks was poor; metrics for most sub-stocks indicate a decline from 1996–2021. However, the status metrics of sub-stocks were not related to recent (2016) watershed characteristics or the rate of change in watershed characteristics from the mid-1990s to 2016. While the cumulative effects of local human land use throughout Puget Sound may be contributing to the deterioration of spawning biomass, these results also suggest that other drivers that operate at larger scales (e.g., predation, disease, climate) are likely important.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Habitat-Dependent Variation in the Relative Abundance and Growth of the YOY of Five Species of Mugilids in the South-Western Mediterranean 地中海西南部五种鲻鱼幼鱼的相对丰度和生长随生境变化的变化
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-05-04 DOI: 10.1007/s12237-024-01356-5
Ali Becheker, Lamya Chaoui, M. Hichem Kara
{"title":"Habitat-Dependent Variation in the Relative Abundance and Growth of the YOY of Five Species of Mugilids in the South-Western Mediterranean","authors":"Ali Becheker, Lamya Chaoui, M. Hichem Kara","doi":"10.1007/s12237-024-01356-5","DOIUrl":"https://doi.org/10.1007/s12237-024-01356-5","url":null,"abstract":"<p>This work is devoted to the study of the abundance, distribution and growth performance of five Mugilidae species in three types of coastal habitats (coastal sea, estuaries and lagoon) located in a limited geographical area in the south-western Mediterranean (eastern coast of Algeria). The four sites considered (Caroube Beach, Mellah Lagoon, Boukhmira and Mafragh Estuaries) are differentiated by their salinity, which evolves at different intervals. The five species enter the considered paralic environments at very small sizes (2–3 cm TL). Regardless of site, <i>Liza saliens</i> is the most abundant (46.92%), followed by <i>Liza aurata</i> (23.72%), <i>Chelon labrosus</i> (13.96%), <i>Liza ramada</i> (11.80%) and <i>Mugil cephalus</i> (3.50%). Each species has a different occupation profile for each site (date of recruitment, relative abundance and demographic structure). The same is true for daily growth, which is better at Mafragh for <i>L. saliens</i> (0.7 ± 0.13 mm/day), at Boukhmira and Mafragh for <i>L. aurata</i> (0.53 ± 0.08 and 0.48 ± 0.09 mm/day, respectively), at Caroube for <i>L. ramada</i> (0.58 ± 0.12 mm/day) and at Mellah for <i>C. labrosus</i> (0.59 ± 0.14 mm/day) and <i>M. cephalus</i> (0.68 ± 0.17 mm/day). The closeness of the daily growth values for the five species to data obtained by various multi-year ageing methods (scalimetry, otolithometry) shows the validity of using otolith microstructures to determine the age of juvenile 0<sup>+</sup> Mugilidae. This study shows heterogeneity in the relative abundance, demographic structure and somatic development of the five species considered depending on their habitat and suggests the influence of certain abiotic parameters on some of them. The two most interesting species for aquaculture (<i>Liza ramada</i> and <i>M. cephalus</i>) are relatively the least abundant, but still have interesting potential for freshwater aquaculture, because of their euryhalinity and their interesting maximum length, as well as their relatively fast growth in freshwater. The results of this study are of an applied nature because they contribute to the development of extensive mugilid aquaculture.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"16 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Litter Decomposition in Retreating Coastal Forests 退缩的沿海森林中的垃圾分解
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-04-28 DOI: 10.1007/s12237-024-01358-3
Alexander J. Smith, Kendall Valentine, John M. Small, Aliya Khan, Keryn Gedan, Giovanna Nordio, Sergio Fagherazzi, Matthew L. Kirwan
{"title":"Litter Decomposition in Retreating Coastal Forests","authors":"Alexander J. Smith, Kendall Valentine, John M. Small, Aliya Khan, Keryn Gedan, Giovanna Nordio, Sergio Fagherazzi, Matthew L. Kirwan","doi":"10.1007/s12237-024-01358-3","DOIUrl":"https://doi.org/10.1007/s12237-024-01358-3","url":null,"abstract":"<p>Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr<sup>−1</sup> (surface), 0.450 ± 0.039 yr<sup>−1</sup> (buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"73 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and Ontogenetic Trophic Dynamics of Co-occurring Predatory Fishes in a Northern Gulf of Mexico Estuary 墨西哥湾北部河口共生掠食性鱼类的空间和本生营养动态
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-04-24 DOI: 10.1007/s12237-024-01361-8
Mariah C. Livernois, Ryan J. Rezek, R. J. David Wells
{"title":"Spatial and Ontogenetic Trophic Dynamics of Co-occurring Predatory Fishes in a Northern Gulf of Mexico Estuary","authors":"Mariah C. Livernois, Ryan J. Rezek, R. J. David Wells","doi":"10.1007/s12237-024-01361-8","DOIUrl":"https://doi.org/10.1007/s12237-024-01361-8","url":null,"abstract":"<p>Co-occurring predators often exhibit ecological niche partitioning, resulting from competition over evolutionary time. However, in productive estuarine ecosystems with high resource availability, predators may occupy similar niches without conflict. Determining the degree of niche partitioning and overlap among co-occurring predators can provide insights into a food web’s function and its potential resiliency to perturbations. This study used stable isotope analysis to assess the trophic ecology of four predators in Galveston Bay, Texas, USA: spotted seatrout, black drum, bull shark, and alligator gar. Spatially distinct primary producer isotopic ratios emerged for both δ<sup>13</sup>C and δ<sup>15</sup>N following salinity regimes, which translated to similar patterns in predator tissue. The volume and overlap among species’ trophic niches also varied spatially, with species-specific expansion and contraction of niches across the freshwater-marine continuum. The observed niche patterns were likely related to movements, with implications for trophic coupling across the estuarine landscape. Using regional delineations for baseline values yielded trophic position estimates that were validated by compound-specific stable isotopes and were similar (3.77 to 3.96) for all species but black drum (3.25). Trophic position increased with body length for all species but black drum, and these relationships differed when using estuary-wide versus regionally distinct baselines. Alligator gar gut contents were examined, which primarily aligned with piscivory but also included previously unreported taxa (insect, mammal). Collectively, these results provide evidence for spatial and ontogenetic shifts in trophic ecology within this predator assemblage and highlight the importance of spatial scale when using stable isotopes to examine estuarine food webs.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"64 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Time, Tide, and Place on Fine-Scale Nekton Distribution: Insights from the San Francisco Estuary 时间、潮汐和地点对细尺度底栖生物分布的影响:来自旧金山河口的启示
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-04-18 DOI: 10.1007/s12237-024-01351-w
Matthew J. Young, Frederick Feyrer, Jason Hassrick, Shawn Acuña, David Ayers, John Donovan, Lenny Grimaldo
{"title":"The Influence of Time, Tide, and Place on Fine-Scale Nekton Distribution: Insights from the San Francisco Estuary","authors":"Matthew J. Young, Frederick Feyrer, Jason Hassrick, Shawn Acuña, David Ayers, John Donovan, Lenny Grimaldo","doi":"10.1007/s12237-024-01351-w","DOIUrl":"https://doi.org/10.1007/s12237-024-01351-w","url":null,"abstract":"<p>The location of estuarine organisms varies based on geophysical cycles and environmental conditions, which can strongly bias understanding of organism abundance and distribution. In the San Francisco Estuary, California, extensive monitoring surveys have provided insight into the life history and ecology of certain commercially important or legislatively protected fish species. However, there remains substantial uncertainty in factors influencing the vertical and lateral distributions of many other nekton species in the San Francisco Estuary, including longfin smelt <i>Spirinchus thaleichthys</i>, for whom such distributional information may highly influence interpretation of existing data. We carried out paired sampling using surface and demersal gears to address three questions: (1) Does diel phase influence the vertical position of nekton (e.g., surface versus demersal)? (2) Do environmental conditions, specifically turbidity, influence the vertical and lateral positions of nekton (e.g., center channel versus peripheral shoal)? (3) Does tidal variability influence vertical and lateral distributions of nekton? We documented variability in sampled nekton densities across diel phase (day/night), vertical position (surface/bottom), and lateral position (channel/shoal). Tidal phase and turbidity concentration influenced vertical and lateral distributions for some species at certain locations. Although infrequently encountered, we documented associations of longfin smelt with the lower water column and shoal habitats, with some evidence for upward vertical shifts in low light conditions brought about by nightfall or elevated turbidity. Observed habitat associations provide insight into how interacting geophysical and environmental factors may influence the distribution of nekton and thus the vulnerability of individual species to detection by sampling gears.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: II. Modeling the Importance of Marsh Development Time 马里兰州切萨皮克湾白杨岛恢复沼泽的海拔变化:II.模拟沼泽发育时间的重要性
IF 2.7 3区 环境科学与生态学
Estuaries and Coasts Pub Date : 2024-04-15 DOI: 10.1007/s12237-024-01342-x
James T. Morris, Lorie W. Staver
{"title":"Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: II. Modeling the Importance of Marsh Development Time","authors":"James T. Morris, Lorie W. Staver","doi":"10.1007/s12237-024-01342-x","DOIUrl":"https://doi.org/10.1007/s12237-024-01342-x","url":null,"abstract":"<p>Tidal marshes in the Chesapeake Bay are vulnerable to the accelerating rate of sea-level rise (SLR) and subsidence. Restored and created marshes face the same risks as natural marshes, and their resilience to SLR may depend upon appropriate design and implementation. Here, the Coastal Wetland Equilibrium Model (CWEM) was used to assess the resilience of tidal marshes at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (PI) in mid-Chesapeake Bay, MD, where dredged material from navigation channels is being used to create new tidal marshes planted with <i>Spartina alterniflora</i> in the low marsh and <i>S. patens</i> in the high marsh. The site is microtidal with low inorganic sediment inputs, where the rate of marsh elevation change is dominated by the production of organic matter and, therefore, is proportional to net ecosystem production (NEP). The model demonstrated the importance of marsh development for surface elevation gain. In created marshes, the buildout of belowground biomass adds volume and results in faster growth of marsh elevation, but the gains slow as the marsh matures. Elevation gain is the lessor of the recalcitrant fraction of NEP sequestered in sediment or the rate of increase in accommodation space. Marshes can keep up with and fill accommodation space with sequestered NEP up to a tipping point determined by the rate of SLR. The PI low marsh platform was forecasted to drown in about 43 years after construction at the current rate of SLR. Marsh loss can be mitigated by periodic thin layer placement (TLP) of sediment. CWEM was used to simulate PI marsh responses to different TLP strategies and showed that there is an optimal design that will maximize carbon sequestration and resilience depending on the trajectory of mean sea level.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"77 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信