退缩的沿海森林中的垃圾分解

IF 2.3 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Alexander J. Smith, Kendall Valentine, John M. Small, Aliya Khan, Keryn Gedan, Giovanna Nordio, Sergio Fagherazzi, Matthew L. Kirwan
{"title":"退缩的沿海森林中的垃圾分解","authors":"Alexander J. Smith, Kendall Valentine, John M. Small, Aliya Khan, Keryn Gedan, Giovanna Nordio, Sergio Fagherazzi, Matthew L. Kirwan","doi":"10.1007/s12237-024-01358-3","DOIUrl":null,"url":null,"abstract":"<p>Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr<sup>−1</sup> (surface), 0.450 ± 0.039 yr<sup>−1</sup> (buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"73 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Litter Decomposition in Retreating Coastal Forests\",\"authors\":\"Alexander J. Smith, Kendall Valentine, John M. Small, Aliya Khan, Keryn Gedan, Giovanna Nordio, Sergio Fagherazzi, Matthew L. Kirwan\",\"doi\":\"10.1007/s12237-024-01358-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr<sup>−1</sup> (surface), 0.450 ± 0.039 yr<sup>−1</sup> (buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01358-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01358-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海平面上升导致盐沼向沿海森林迁移,从而改变了生态系统的组成和功能。在这项研究中,我们调查了沼泽-森林边界上的落叶分解情况,这是森林碳循环的一个重要组成部分,重点是环境梯度(即温度、光照、湿度、盐度和氧气)对分解率的潜在影响。为了研究垃圾在这些可能相互竞争的环境梯度中的分解情况,我们在沼泽-森林连续带上不同的森林健康群落中放置了垃圾袋,并监测了 6 个月的分解率。我们的研究结果表明,虽然垃圾的埋藏深度会使任何一个林区内的分解率提高约 60%(分解率 = 0.272 ± 0.029 yr-1(表层),0.450 ± 0.039 yr-1(埋藏)),但我们观察到沼泽-森林边界上的分解率变化有限,只有在新近受到盐水入侵和灌木侵占影响的森林中部土壤中,分解率略有提高。分解率没有线性变化表明,观察到的环境梯度之间存在非线性相互作用,从而使整个沼泽-森林边界的净分解率保持一致。然而,尽管边界上的分解率相似,但由于成熟树木的缺失,枯落叶的流入量减少,累积的土壤枯落叶层消失了。我们发现环境梯度与预期的分解趋势相反,这可以为碳-气候模型预测提供信息,并可能表明其他过渡生态系统边界的分解动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Litter Decomposition in Retreating Coastal Forests

Litter Decomposition in Retreating Coastal Forests

Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr−1 (surface), 0.450 ± 0.039 yr−1 (buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Estuaries and Coasts
Estuaries and Coasts 环境科学-海洋与淡水生物学
CiteScore
5.60
自引率
11.10%
发文量
107
审稿时长
12-24 weeks
期刊介绍: Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信