Leah R. Davis, Fabienne Urfer, Timothy E. Essington, Blake E. Feist, Tessa B. Francis
{"title":"局部流域特性无法解释城市化河口太平洋鲱鱼的差异动态","authors":"Leah R. Davis, Fabienne Urfer, Timothy E. Essington, Blake E. Feist, Tessa B. Francis","doi":"10.1007/s12237-024-01355-6","DOIUrl":null,"url":null,"abstract":"<p>Pacific herring (<i>Clupea pallasii</i>) is a foundational species in Puget Sound (Washington State, U.S.A.) and is subject to many anthropogenic threats. We assessed the overall status of the Puget Sound Pacific herring sub-stock complex and asked whether watersheds with less urban or agricultural land cover, less impervious surface, and lower human density were associated with better stock status. To this end, we developed multiple metrics of sub-stock population status; characterized watershed properties with respect to land use/land cover, percent impervious surfaces, and human density; and used statistical model selection to evaluate the weight of evidence in support of our hypotheses. Overall, the status of sub-stocks was poor; metrics for most sub-stocks indicate a decline from 1996–2021. However, the status metrics of sub-stocks were not related to recent (2016) watershed characteristics or the rate of change in watershed characteristics from the mid-1990s to 2016. While the cumulative effects of local human land use throughout Puget Sound may be contributing to the deterioration of spawning biomass, these results also suggest that other drivers that operate at larger scales (e.g., predation, disease, climate) are likely important.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Watershed Properties Cannot Explain Divergent Dynamics of Pacific Herring in an Urbanizing Estuary\",\"authors\":\"Leah R. Davis, Fabienne Urfer, Timothy E. Essington, Blake E. Feist, Tessa B. Francis\",\"doi\":\"10.1007/s12237-024-01355-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pacific herring (<i>Clupea pallasii</i>) is a foundational species in Puget Sound (Washington State, U.S.A.) and is subject to many anthropogenic threats. We assessed the overall status of the Puget Sound Pacific herring sub-stock complex and asked whether watersheds with less urban or agricultural land cover, less impervious surface, and lower human density were associated with better stock status. To this end, we developed multiple metrics of sub-stock population status; characterized watershed properties with respect to land use/land cover, percent impervious surfaces, and human density; and used statistical model selection to evaluate the weight of evidence in support of our hypotheses. Overall, the status of sub-stocks was poor; metrics for most sub-stocks indicate a decline from 1996–2021. However, the status metrics of sub-stocks were not related to recent (2016) watershed characteristics or the rate of change in watershed characteristics from the mid-1990s to 2016. While the cumulative effects of local human land use throughout Puget Sound may be contributing to the deterioration of spawning biomass, these results also suggest that other drivers that operate at larger scales (e.g., predation, disease, climate) are likely important.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01355-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01355-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Local Watershed Properties Cannot Explain Divergent Dynamics of Pacific Herring in an Urbanizing Estuary
Pacific herring (Clupea pallasii) is a foundational species in Puget Sound (Washington State, U.S.A.) and is subject to many anthropogenic threats. We assessed the overall status of the Puget Sound Pacific herring sub-stock complex and asked whether watersheds with less urban or agricultural land cover, less impervious surface, and lower human density were associated with better stock status. To this end, we developed multiple metrics of sub-stock population status; characterized watershed properties with respect to land use/land cover, percent impervious surfaces, and human density; and used statistical model selection to evaluate the weight of evidence in support of our hypotheses. Overall, the status of sub-stocks was poor; metrics for most sub-stocks indicate a decline from 1996–2021. However, the status metrics of sub-stocks were not related to recent (2016) watershed characteristics or the rate of change in watershed characteristics from the mid-1990s to 2016. While the cumulative effects of local human land use throughout Puget Sound may be contributing to the deterioration of spawning biomass, these results also suggest that other drivers that operate at larger scales (e.g., predation, disease, climate) are likely important.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.