EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf039
Jason P Breves
{"title":"TRPA1 Activation Blunts the Somatotropic Axis in Ectothermic Fish.","authors":"Jason P Breves","doi":"10.1210/endocr/bqaf039","DOIUrl":"10.1210/endocr/bqaf039","url":null,"abstract":"","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf033
Loïc Kacimi, Vincent Prevot
{"title":"GnRH and Cognition.","authors":"Loïc Kacimi, Vincent Prevot","doi":"10.1210/endocr/bqaf033","DOIUrl":"10.1210/endocr/bqaf033","url":null,"abstract":"<p><p>GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal \"switch\" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the \"cognitive reserve\" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf028
Elisabet Jerlhag
{"title":"GLP-1 Receptor Agonists: Promising Therapeutic Targets for Alcohol Use Disorder.","authors":"Elisabet Jerlhag","doi":"10.1210/endocr/bqaf028","DOIUrl":"10.1210/endocr/bqaf028","url":null,"abstract":"<p><p>Glucagon-like peptide-1 (GLP-1) is abundant in the circulation, and it is well-known to regulate glucose homeostasis, feeding, and body weight. GLP-1 receptor agonists are therefore approved for treating type 2 diabetes and obesity. However, more recent research has demonstrated that GLP-1 acts within the brain to modulate reward responses, thereby highlighting GLP-1 as a potential target for addiction. Specifically, preclinical studies demonstrated that GLP-1 receptor agonists decrease alcohol intake, reduce the motivation to consume alcohol, and prevent relapse drinking by potentially lowering alcohol-induced reward. These preclinical results have been confirmed and extended in human studies in which GLP-1 receptor agonists reduce alcohol intake in patients with alcohol use disorder (AUD) who have a regular weight or comorbidity of obesity or type 2 diabetes. On a similar note, genetic variations in genes encoding for the GLP-1 receptor are associated with AUD and heavy drinking. The central mechanisms by which GLP-1 regulates alcohol-related behaviors are not fully defined, but may involve areas central to reward as well as regions projecting to these reward areas, such as the nucleus tractus solitarius of the brainstem. Together, existing preclinical and clinical data suggest that GLP-1 is involved in the AUD process and implies its role as a tentative treatment for AUD.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf045
Zixuan Li, Bernard Robaire
{"title":"Effects of Endocrine-Disrupting Chemicals on Adrenal Function.","authors":"Zixuan Li, Bernard Robaire","doi":"10.1210/endocr/bqaf045","DOIUrl":"10.1210/endocr/bqaf045","url":null,"abstract":"<p><p>The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf034
Gokce Kiryaman, Irobosa Enabulele, Myra L Banville, Paola Divieti Pajevic
{"title":"The Evolving Role of PTH Signaling in Osteocytes.","authors":"Gokce Kiryaman, Irobosa Enabulele, Myra L Banville, Paola Divieti Pajevic","doi":"10.1210/endocr/bqaf034","DOIUrl":"10.1210/endocr/bqaf034","url":null,"abstract":"<p><p>Over the past decade, advancements in cell line development and genetic tools have led to a wealth of new insights into the effects of parathyroid hormone (PTH), particularly on osteocytes-cells deeply embedded within the bone's mineral matrix. These cells were once believed to be inactive bystanders, with little, if any, role in skeletal and mineral homeostasis. This concept of passive osteocytes has been challenged in recent years and osteocytes are now recognized for their crucial functions in skeletal mechanotransduction, bone modeling and remodeling, mineral ion regulation, and hematopoiesis. Moreover, osteocytes are key targets of PTH, and studies utilizing genetically modified mice, in which the PTH receptor is either deleted or overexpressed, have shed light on the hormone's complex effects on these cells. Several signaling molecules, including salt kinase inhibitors and histone deacetylases, have been identified as part of PTH's intracellular signaling cascade. In addition to its effects on bone metabolism, PTH has also been implicated in regulating bone energy metabolism, skeletal aging, and hematopoiesis. This review summarizes both classical and emerging effects of PTH on osteocytes, highlights the limitations of current research, and offers perspectives for future investigations in the field.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf036
Tiffany K Miles, Angela K Odle, Stephanie D Byrum, Alex N Lagasse, Anessa C Haney, Victoria G Ortega, Ashley K Herdman, Melanie C MacNicol, Angus M MacNicol, Gwen V Childs
{"title":"Ablation of Leptin Receptor Signaling Alters Somatotrope Transcriptome Maturation in Female Mice.","authors":"Tiffany K Miles, Angela K Odle, Stephanie D Byrum, Alex N Lagasse, Anessa C Haney, Victoria G Ortega, Ashley K Herdman, Melanie C MacNicol, Angus M MacNicol, Gwen V Childs","doi":"10.1210/endocr/bqaf036","DOIUrl":"10.1210/endocr/bqaf036","url":null,"abstract":"<p><p>Anterior pituitary somatotropes respond to metabolic signals from the adipokine leptin to optimize functional responses to the body's nutritional state via growth hormone (GH) secretion. Molecular targets of leptin in pituitary somatotropes include GH, the GH-releasing hormone receptor (GHRHR), and, in females, the transcription factor POU1F1, all of which are dependent on leptin stimulation for expression. To identify the trophic mechanisms underlying leptin action upon somatotropes, we analyzed single-cell gene transcriptomes comparing pituitaries from a female mouse model bearing somatotropes lacking leptin receptors (LEPR-null mutants) and control pituitaries. Computational clustering of results identified all common pituitary cell types and differentially expressed genes. Mutant female somatotrope clusters showed decreased levels of Gh and Htatsf1 mRNA, which was also reduced in mutant pituitaries lacking Prop1 or POU1F1. Mutant somatotropes also showed increased expression of markers for pituitary stem and progenitor cells (eg, Sox9) and increased (1.73-6.7 fold) expression of nonsomatotrope hormones, Pomc, Lhb, Tshb, Cga, and Prl. Conversely, the mutant female Sox2-positive stem cell cluster showed decreased expression of markers for stem cells and increased expression of pituitary hormone genes. The data support a model in which the female pituitary somatotrope cell population's development and/or maintenance requires leptin trophic signals and also suggests that, in the absence of normal somatotrope maturation, pituitary stem cells are driven towards premature differentiation.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Cell Landscape of Peripheral Blood Mononuclear Cells in Patients With Graves Disease.","authors":"Yixuan Wang, Xinjie Zhang, Junfeng Ge, Jiajia Jin, Zhijian Zheng, Jiaxuan Li, Xiaowei Wang, Shucui Zhang, Zhe Wang, Guangguo Dong","doi":"10.1210/endocr/bqaf038","DOIUrl":"10.1210/endocr/bqaf038","url":null,"abstract":"<p><strong>Context: </strong>Graves disease (GD) is a thyroid-specific autoimmune disease and the most common cause of hyperthyroidism. Its pathogenesis is associated with the disruption of immune tolerance and autoantibody production. However, the mechanisms underlying immune abnormalities remain incompletely elucidated.</p><p><strong>Objective: </strong>To investigate changes in the cellular composition and function of peripheral blood mononuclear cells (PBMCs) in GD patients at single-cell resolution.</p><p><strong>Methods: </strong>We employed single-cell RNA sequencing (scRNA-seq) and analyzed 22 680 peripheral blood mononuclear cells (PBMCs) from 8 GD patients and 12 healthy controls.</p><p><strong>Results: </strong>Our results unveiled the single-cell landscape of PBMCs in GD patients, revealing substantial heterogeneity and changes in the cellular composition and function of PBMCs. We observed an increase in the proportion of CD16+ natural killer (NK) cells and memory cells in T and B lymphocyte subsets. This increase was accompanied by significantly enhanced functions, including cell activation, immune/defense responses, and inflammatory reactions. Additionally, we detected changes in the activity of transcription factors in various cell types, which were linked to the regulation of genes critical for immune and inflammation responses. Furthermore, we found a reduction in communication between NK cells and other immune cells, including CD4+ T cells, monocytes, and B cells, mediated by killer cell immunoglobulin-like receptor (KIR)-like inhibitory receptors, suggesting their involvement in the pathogenesis of GD.</p><p><strong>Conclusion: </strong>Our study revealed characteristic alterations in the composition and function of immune cell subsets in the PBMCs of GD patients. These findings shed light on the mechanisms underlying immune dysregulation in GD.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf035
Rossella Cannarella, Mangesh Suryavanshi, Aldo E Calogero, Nina Desai, Scott D Lundy, Aaron W Miller
{"title":"Deciphering Sperm-Carried IGF2 Transcript Variants: Cloning, qPCR Detection, and Variant Analysis.","authors":"Rossella Cannarella, Mangesh Suryavanshi, Aldo E Calogero, Nina Desai, Scott D Lundy, Aaron W Miller","doi":"10.1210/endocr/bqaf035","DOIUrl":"10.1210/endocr/bqaf035","url":null,"abstract":"<p><strong>Context: </strong>The insulin-like growth factor 2 (IGF2) gene, a paternally imprinted gene inactive in oocytes, plays a vital role in early embryo development. While 5 IGF2 variants have been described, the specific variants expressed in human spermatozoa compared to granulosa cells (GCs) remain unclear.</p><p><strong>Objective: </strong>To characterize the quantity and variants of IGF2 transcripts expressed in human spermatozoa.</p><p><strong>Methods: </strong>Post-gradient sperm samples were collected from 2 healthy, fertile men with normal semen parameters, while GCs were isolated following an oocyte retrieval procedure of a woman undergoing in vitro fertilization due to male factor infertility. RNA extraction, cDNA synthesis, PCR amplification, and cloning were performed. PCR products were ligated into PCR4-TOPO vectors and transformed into Escherichia coli DH-10α. A total of 96 positive clones (32 per sample) were characterized via Sanger sequencing to identify variants. Quantitative PCR (qPCR) with gene-specific primers analyzed transcript quantities, single nucleotide polymorphisms (SNPs), product sizes, and melting temperatures.</p><p><strong>Results: </strong>Of the 96 true-positive IGF2 cDNA clones, 14 distinct variants were identified, including deletions, insertions, and SNPs, resulting in amino acid sequence changes. Two common variants were present in both sperm and GCs, while 2 were GC-specific, and the remaining were exclusive to spermatozoa. Some clustered with known NCBI variants, while others formed 2 novel phylogenetic clusters.</p><p><strong>Conclusion: </strong>This study expands the repertoire of IGF2 variants and highlights differences between spermatozoa and GC transcripts. It is the first to analyze IGF2 variants in sperm from fertile men, paving the way for future research into their role in embryogenesis.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf031
Yu Wang, Shruti V Bendre, Steven A Krauklis, Andrew J Steelman, Erik R Nelson
{"title":"Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology.","authors":"Yu Wang, Shruti V Bendre, Steven A Krauklis, Andrew J Steelman, Erik R Nelson","doi":"10.1210/endocr/bqaf031","DOIUrl":"10.1210/endocr/bqaf031","url":null,"abstract":"<p><p>Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}