内分泌干扰物对肾上腺功能的影响。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Zixuan Li, Bernard Robaire
{"title":"内分泌干扰物对肾上腺功能的影响。","authors":"Zixuan Li, Bernard Robaire","doi":"10.1210/endocr/bqaf045","DOIUrl":null,"url":null,"abstract":"<p><p>The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Endocrine-Disrupting Chemicals on Adrenal Function.\",\"authors\":\"Zixuan Li, Bernard Robaire\",\"doi\":\"10.1210/endocr/bqaf045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

肾上腺在调节新陈代谢、血压、免疫系统功能以及通过分泌激素来应对压力方面发挥着至关重要的作用。尽管肾上腺具有重要的功能,但在研究潜在毒物的影响时却经常被忽视。人类、动物和体外研究已经确定了60多种可以诱导肾上腺皮质毒性的化合物。这些化合物被称为内分泌干扰化学物质(EDCs),是干扰内分泌系统的天然或合成物质。本文综述了阻燃剂、双酚类、邻苯二甲酸盐和微塑料等四大类EDCs对肾上腺功能的影响。PubMed数据库搜索了报告这四个家族的化学物质对肾上腺影响的研究。有明确的证据表明,肾上腺的形态和功能受到影响,特别是通过破坏类固醇生成途径。此外,一些EDCs已被证明具有跨代效应,这进一步引起了人们对其长期影响的担忧。然而,大多数EDCs尚未对其对肾上腺功能的影响进行彻底评估,特别是在人体研究中。因此,迫切需要制定将肾上腺纳入EDCs筛查的监管性检测指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Endocrine-Disrupting Chemicals on Adrenal Function.

The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信