Gokce Kiryaman, Irobosa Enabulele, Myra L Banville, Paola Divieti Pajevic
{"title":"The Evolving Role of PTH Signaling in Osteocytes.","authors":"Gokce Kiryaman, Irobosa Enabulele, Myra L Banville, Paola Divieti Pajevic","doi":"10.1210/endocr/bqaf034","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, advancements in cell line development and genetic tools have led to a wealth of new insights into the effects of parathyroid hormone (PTH), particularly on osteocytes-cells deeply embedded within the bone's mineral matrix. These cells were once believed to be inactive bystanders, with little, if any, role in skeletal and mineral homeostasis. This concept of passive osteocytes has been challenged in recent years and osteocytes are now recognized for their crucial functions in skeletal mechanotransduction, bone modeling and remodeling, mineral ion regulation, and hematopoiesis. Moreover, osteocytes are key targets of PTH, and studies utilizing genetically modified mice, in which the PTH receptor is either deleted or overexpressed, have shed light on the hormone's complex effects on these cells. Several signaling molecules, including salt kinase inhibitors and histone deacetylases, have been identified as part of PTH's intracellular signaling cascade. In addition to its effects on bone metabolism, PTH has also been implicated in regulating bone energy metabolism, skeletal aging, and hematopoiesis. This review summarizes both classical and emerging effects of PTH on osteocytes, highlights the limitations of current research, and offers perspectives for future investigations in the field.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf034","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, advancements in cell line development and genetic tools have led to a wealth of new insights into the effects of parathyroid hormone (PTH), particularly on osteocytes-cells deeply embedded within the bone's mineral matrix. These cells were once believed to be inactive bystanders, with little, if any, role in skeletal and mineral homeostasis. This concept of passive osteocytes has been challenged in recent years and osteocytes are now recognized for their crucial functions in skeletal mechanotransduction, bone modeling and remodeling, mineral ion regulation, and hematopoiesis. Moreover, osteocytes are key targets of PTH, and studies utilizing genetically modified mice, in which the PTH receptor is either deleted or overexpressed, have shed light on the hormone's complex effects on these cells. Several signaling molecules, including salt kinase inhibitors and histone deacetylases, have been identified as part of PTH's intracellular signaling cascade. In addition to its effects on bone metabolism, PTH has also been implicated in regulating bone energy metabolism, skeletal aging, and hematopoiesis. This review summarizes both classical and emerging effects of PTH on osteocytes, highlights the limitations of current research, and offers perspectives for future investigations in the field.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.