Essays in biochemistry最新文献

筛选
英文 中文
Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. 维持功能性β细胞质量的硫酸化途径及其对糖尿病的影响。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-12-04 DOI: 10.1042/EBC20240034
Jonathan Wolf Mueller, Patricia Thomas, Louise Torp Dalgaard, Gabriela da Silva Xavier
{"title":"Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes.","authors":"Jonathan Wolf Mueller, Patricia Thomas, Louise Torp Dalgaard, Gabriela da Silva Xavier","doi":"10.1042/EBC20240034","DOIUrl":"10.1042/EBC20240034","url":null,"abstract":"<p><p>Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"509-522"},"PeriodicalIF":5.6,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does AMPK bind glycogen in skeletal muscle or is the relationship correlative? AMPK 与骨骼肌中的糖原结合吗?
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240006
Barnaby P Frankish, Robyn M Murphy
{"title":"Does AMPK bind glycogen in skeletal muscle or is the relationship correlative?","authors":"Barnaby P Frankish, Robyn M Murphy","doi":"10.1042/EBC20240006","DOIUrl":"10.1042/EBC20240006","url":null,"abstract":"<p><p>Since its discovery over five decades ago, an emphasis on better understanding the structure and functional role of AMPK has been prevalent. In that time, the role of AMPK as a heterotrimeric enzyme that senses the energy state of various cell types has been established. Skeletal muscle is a dynamic, plastic tissue that adapts to both functional and metabolic demands of the human body, such as muscle contraction or exercise. With a deliberate focus on AMPK in skeletal muscle, this review places a physiological lens to the association of AMPK and glycogen that has been established biochemically. It discusses that, to date, no in vivo association of AMPK with glycogen has been shown and this is not altered with interventions, either by physiological or biochemical utilisation of glycogen in skeletal muscle. The reason for this is likely due to the persistent phosphorylation of Thr148 in the β-subunit of AMPK which prevents AMPK from binding to carbohydrate domains. This review presents the correlative data that suggests AMPK senses glycogen utilisation through a direct interaction with glycogen, the biochemical data showing that AMPK can bind carbohydrate in vitro, and highlights that in a physiological setting of rodent skeletal muscle, AMPK does not directly bind to glycogen.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"337-347"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A special issue of Essays in Biochemistry on AMPK and AMPK-related kinases. 关于 AMPK 和 AMPK 相关激酶的《生物化学论文》特刊。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240038
Ian P Salt, David Carling
{"title":"A special issue of Essays in Biochemistry on AMPK and AMPK-related kinases.","authors":"Ian P Salt, David Carling","doi":"10.1042/EBC20240038","DOIUrl":"10.1042/EBC20240038","url":null,"abstract":"<p><p>In eukaryotic cells, AMP-activated protein kinase (AMPK) plays a central role in responding to nutrient limitation by switching-off ATP-consuming (anabolic) pathways and switching-on ATP generating (catabolic) pathways. Over the last 30 years or so, a considerable body of research has been carried out that has provided us with a wealth of knowledge regarding the regulation and role of AMPK. Despite this, there is still much to learn about AMPK and the field remains highly active, with many groups around the world continuing to explore new roles for AMPK, providing insight into its biological function. This review series was inspired by recent AMPK-focused meetings in Scotland (2022) and Australia (2023) and draws on some of the research presented at those meetings.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"68 3","pages":"269-271"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New developments in AMPK and mTORC1 cross-talk. AMPK 和 mTORC1 交叉对话的新进展。
IF 8.3 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240007
William J Smiles, Ashley J Ovens, Bruce E Kemp, Sandra Galic, Janni Petersen, Jonathan S Oakhill
{"title":"New developments in AMPK and mTORC1 cross-talk.","authors":"William J Smiles, Ashley J Ovens, Bruce E Kemp, Sandra Galic, Janni Petersen, Jonathan S Oakhill","doi":"10.1042/EBC20240007","DOIUrl":"10.1042/EBC20240007","url":null,"abstract":"<p><p>Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"321-336"},"PeriodicalIF":8.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How mass spectrometry can be exploited to study AMPK. 如何利用质谱技术研究 AMPK。
IF 8.3 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240009
Mark H Rider, Didier Vertommen, Manuel Johanns
{"title":"How mass spectrometry can be exploited to study AMPK.","authors":"Mark H Rider, Didier Vertommen, Manuel Johanns","doi":"10.1042/EBC20240009","DOIUrl":"10.1042/EBC20240009","url":null,"abstract":"<p><p>AMP-activated protein kinase (AMPK) is a key regulator of metabolism and a recognised target for the treatment of metabolic diseases such as Type 2 diabetes (T2D). Here, we review how mass spectrometry (MS) can be used to study short-term control by AMPK via protein phosphorylation and long-term control due to changes in protein expression. We discuss how MS can quantify AMPK subunit levels in tissues from different species. We propose hydrogen-deuterium exchange (HDX)-MS to investigate molecular mechanisms of AMPK activation and thermoproteomic profiling (TPP) to assess off-target effects of pharmacological AMPK activators/inhibitors. Lastly, because large MS data sets are generated, we consider different approaches that can be used for their interpretation.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"283-294"},"PeriodicalIF":8.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CaMKK2: bridging the gap between Ca2+ signaling and energy-sensing. CaMKK2:Ca2+信号传导与能量感应之间的桥梁。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240011
Luke M McAloon, Abbey G Muller, Kevin Nay, Eudora L Lu, Benoit Smeuninx, Anthony R Means, Mark A Febbraio, John W Scott
{"title":"CaMKK2: bridging the gap between Ca2+ signaling and energy-sensing.","authors":"Luke M McAloon, Abbey G Muller, Kevin Nay, Eudora L Lu, Benoit Smeuninx, Anthony R Means, Mark A Febbraio, John W Scott","doi":"10.1042/EBC20240011","DOIUrl":"10.1042/EBC20240011","url":null,"abstract":"<p><p>Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"309-320"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New concepts in the roles of AMPK in adipocyte stem cell biology. AMPK 在脂肪干细胞生物学中作用的新概念。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240008
Alice E Pollard
{"title":"New concepts in the roles of AMPK in adipocyte stem cell biology.","authors":"Alice E Pollard","doi":"10.1042/EBC20240008","DOIUrl":"10.1042/EBC20240008","url":null,"abstract":"<p><p>Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"349-361"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. AMPK 和 O-GlcNAcylation:心脏病变和心力衰竭中的相互作用。
IF 8.3 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240003
Ettore Vanni, Christophe Beauloye, Sandrine Horman, Luc Bertrand
{"title":"AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure.","authors":"Ettore Vanni, Christophe Beauloye, Sandrine Horman, Luc Bertrand","doi":"10.1042/EBC20240003","DOIUrl":"10.1042/EBC20240003","url":null,"abstract":"<p><p>Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"363-377"},"PeriodicalIF":8.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding metabolic plasticity at single cell resolution. 以单细胞分辨率了解代谢可塑性。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240002
Christina C Abbate, Jason Hu, John G Albeck
{"title":"Understanding metabolic plasticity at single cell resolution.","authors":"Christina C Abbate, Jason Hu, John G Albeck","doi":"10.1042/EBC20240002","DOIUrl":"10.1042/EBC20240002","url":null,"abstract":"<p><p>It is increasingly clear that cellular metabolic function varies not just between cells of different tissues, but also within tissues and cell types. In this essay, we envision how differences in central carbon metabolism arise from multiple sources, including the cell cycle, circadian rhythms, intrinsic metabolic cycles, and others. We also discuss and compare methods that enable such variation to be detected, including single-cell metabolomics and RNA-sequencing. We pay particular attention to biosensors for AMPK and central carbon metabolites, which when used in combination with metabolic perturbations, provide clear evidence of cellular variance in metabolic function.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"273-281"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NUAK: never underestimate a kinase. NUAK:永远不要低估激酶。
IF 5.6 2区 生物学
Essays in biochemistry Pub Date : 2024-11-18 DOI: 10.1042/EBC20240005
George L Skalka, Declan Whyte, Dominika Lubawska, Daniel J Murphy
{"title":"NUAK: never underestimate a kinase.","authors":"George L Skalka, Declan Whyte, Dominika Lubawska, Daniel J Murphy","doi":"10.1042/EBC20240005","DOIUrl":"10.1042/EBC20240005","url":null,"abstract":"<p><p>NUAK1 and NUAK2 belong to a family of kinases related to the catalytic α-subunits of the AMP-activated protein kinase (AMPK) complexes. Despite canonical activation by the tumour suppressor kinase LKB1, both NUAKs exhibit a spectrum of activities that favour tumour development and progression. Here, we review similarities in structure and function of the NUAKs, their regulation at gene, transcript and protein level, and discuss their phosphorylation of specific downstream targets in the context of the signal transduction pathways and biological activities regulated by each or both NUAKs.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"295-307"},"PeriodicalIF":5.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信