Hongling Liu, Florentina Negoita, Matthew Brook, Kei Sakamoto, Nicholas M Morton
{"title":"Quantification of persulfidation on specific proteins: are we nearly there yet?","authors":"Hongling Liu, Florentina Negoita, Matthew Brook, Kei Sakamoto, Nicholas M Morton","doi":"10.1042/EBC20230095","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen sulfide (H2S) played a pivotal role in the early evolution of life on Earth before the predominance of atmospheric oxygen. The legacy of a persistent role for H2S in life's processes recently emerged through its discovery in modern biochemistry as an endogenous cellular signalling modulator involved in numerous biological processes. One major mechanism through which H2S signals is protein cysteine persulfidation, an oxidative post-translational modification. In recent years, chemoproteomic technologies have been developed to allow the global scanning of protein persulfidation targets in mammalian cells and tissues, providing a powerful tool to elucidate the broader impact of altered H2S in organismal physiological health and human disease states. While hundreds of proteins were confirmed to be persulfidated by global persulfidome methodologies, the targeting of specific proteins of interest and the investigation of further mechanistic studies are still underdeveloped due to a lack of stringent specificity of the methods and the inherent instability of persulfides. This review provides an overview of the processes of endogenous H2S production, oxidation, and signalling and highlights the application and limitations of current persulfidation labelling approaches for investigation of this important evolutionarily conserved biological switch for protein function.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"467-478"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S) played a pivotal role in the early evolution of life on Earth before the predominance of atmospheric oxygen. The legacy of a persistent role for H2S in life's processes recently emerged through its discovery in modern biochemistry as an endogenous cellular signalling modulator involved in numerous biological processes. One major mechanism through which H2S signals is protein cysteine persulfidation, an oxidative post-translational modification. In recent years, chemoproteomic technologies have been developed to allow the global scanning of protein persulfidation targets in mammalian cells and tissues, providing a powerful tool to elucidate the broader impact of altered H2S in organismal physiological health and human disease states. While hundreds of proteins were confirmed to be persulfidated by global persulfidome methodologies, the targeting of specific proteins of interest and the investigation of further mechanistic studies are still underdeveloped due to a lack of stringent specificity of the methods and the inherent instability of persulfides. This review provides an overview of the processes of endogenous H2S production, oxidation, and signalling and highlights the application and limitations of current persulfidation labelling approaches for investigation of this important evolutionarily conserved biological switch for protein function.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.