Sarah J L Edwards, Yiran Tao, Rodas Elias, Robert Schooley
{"title":"Considerations for prioritising clinical research using bacteriophage.","authors":"Sarah J L Edwards, Yiran Tao, Rodas Elias, Robert Schooley","doi":"10.1042/EBC20240013","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a significant global health threat, as it contributes to prolonged illness, higher mortality rates and increased healthcare costs. As traditional antibiotics become less effective, treatments such as bacteriophage therapy offer potential solutions. The question remains, however, on how to set research priorities in the face of a growing number of antibiotic-resistant pathogens, some common and/or dangerous. One standard way of making decisions about which research to prioritise is by using the disability-adjusted life year metric to estimate the current global impact of a disease or condition, combined with considerations of social justice although decisions made at a national level by governments, especially in low income countries with forecasting potential over future needs may look very different. Another approach is based on the needs of researchers and regulators given what we know about the technology itself. The biological characteristics of bacteriophage therapies set challenges to a universal and standardised prioritisation method. A proof of principle is still arguably needed. With a preliminary discussion of the scope and complexity of AMR and AMR therapeutics, we propose some implications of regulatory frameworks aiming to integrate bacteriophage therapy into mainstream medical practice while gathering scientific data on safety and efficacy, enhancing the collective action needed to combat AMR.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"679-686"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20240013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, as it contributes to prolonged illness, higher mortality rates and increased healthcare costs. As traditional antibiotics become less effective, treatments such as bacteriophage therapy offer potential solutions. The question remains, however, on how to set research priorities in the face of a growing number of antibiotic-resistant pathogens, some common and/or dangerous. One standard way of making decisions about which research to prioritise is by using the disability-adjusted life year metric to estimate the current global impact of a disease or condition, combined with considerations of social justice although decisions made at a national level by governments, especially in low income countries with forecasting potential over future needs may look very different. Another approach is based on the needs of researchers and regulators given what we know about the technology itself. The biological characteristics of bacteriophage therapies set challenges to a universal and standardised prioritisation method. A proof of principle is still arguably needed. With a preliminary discussion of the scope and complexity of AMR and AMR therapeutics, we propose some implications of regulatory frameworks aiming to integrate bacteriophage therapy into mainstream medical practice while gathering scientific data on safety and efficacy, enhancing the collective action needed to combat AMR.
抗菌药耐药性(AMR)对全球健康构成了重大威胁,因为它导致病程延长、死亡率升高和医疗成本增加。随着传统抗生素的疗效越来越差,噬菌体疗法等治疗方法提供了潜在的解决方案。然而,面对越来越多的抗生素耐药病原体(有些是常见的和/或危险的),如何确定研究重点仍然是个问题。决定优先开展哪些研究的一种标准方法是使用残疾调整生命年指标来估算某种疾病或病症目前对全球的影响,同时考虑社会公正问题,尽管各国政府,特别是低收入国家政府在国家层面上做出的决定可能与预测未来需求的潜力大相径庭。另一种方法是根据我们对技术本身的了解,以研究人员和监管人员的需求为基础。噬菌体疗法的生物特性对通用和标准化的优先排序方法提出了挑战。可以说,我们仍然需要一个原则证明。通过对 AMR 和 AMR 治疗的范围和复杂性的初步讨论,我们提出了监管框架的一些影响,旨在将噬菌体疗法纳入主流医疗实践,同时收集有关安全性和有效性的科学数据,加强对抗 AMR 所需的集体行动。
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.