{"title":"Evaluation of TRPM2 Channel‐Mediated Autophagic Signaling Pathway in Hippocampus and Cortex Tissues of Rat Offspring Following Prenatal Exposure to Elevated Alcohol Levels","authors":"Abdülhadi Cihangir Uğuz, Aslı Okan, Züleyha Doğanyiğit, Seher Yilmaz, Şükrü Ateş, Evrim Suna Arikan Söylemez, Sebahattin Karabulut, Alper Serhat Kumru, Javier Espino","doi":"10.1002/tox.24427","DOIUrl":"https://doi.org/10.1002/tox.24427","url":null,"abstract":"Fetal alcohol syndrome (FAS) can occur because of high amount of alcohol intake during pregnancy and is characterized by both physical and neurological problems. Children diagnosed with FAS have difficulties in learning, memory, and coordination. Hippocampus has a major role in memory and learning. We aimed to determine whether alcohol exposure during pregnancy had any effect on offspring by evaluating learning ability as well as oxidative stress and autophagy in the hippocampus and cortex tissues of litters. Attention was also paid to sex differences. To do so, TRPM2, Beclin1, p62, LC3B, IBA1, parvalbumin, GAD65, and mGluR5 expression levels were evaluated by immunohistochemistry. Lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels, as well as total oxidant (TOS) and total antioxidant (TAS) status were determined by ELISA. Learning experiments were evaluated by the Morris water maze (MWM) test. Our findings demonstrated that IBA1, LC3B, GAD65, and mGluR5 expression levels were higher in female rats of the chronic alcohol exposure (CAE) model. Our IHC results revealed that TRPM2 expression levels were significantly increased in both males and females in the CAE group. Likewise, TAS was lower, and TOS was higher in CAE animals. Moreover, MWM outcomes supported a learning deficiency in CAE litters compared to controls and indicated that female offspring outperformed males in learning experiments. Therefore, our results revealed the detrimental effects of alcohol exposure during pregnancy on autophagy signaling in the hippocampus and cortex tissue of litters, which could affect the learning ability of animals.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hypoxia-Associated GPNMB+ Macrophages Promote Malignant Progression of Colorectal Cancer and Its Related Risk Signature Are Powerful Predictive Tool for the Treatment of Colorectal Cancer Patients.","authors":"Junli Zhang, Shangshang Hu, Xinxin Jin, Yiwen Zheng, Lianchen Yu, Junrao Ma, Biao Gu, Fen Wang, Wenjuan Wu","doi":"10.1002/tox.24426","DOIUrl":"https://doi.org/10.1002/tox.24426","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a highly malignant tumor with hypoxia being a crucial feature during its progression. This study utilized multiple independent CRC cohorts for bioinformatics analysis and in vitro experiments to investigate the role of hypoxia-related subgroups in CRC. Machine learning was employed to construct risk features associated with this subgroup and further explore its therapeutic value in CRC. The study identified the GPNMB+ Macrophage (GPNMB+ Macr) subgroup as most relevant to hypoxia. GPNMB+ Macr showed significantly higher infiltration in tumor tissues compared to non-tumor tissues, increasing with CRC stage. High infiltration of GPNMB+ Macr was associated with poor prognosis in terms of overall and recurrence-free survival in CRC patients. GPNMB+ Macrophages exhibit M2-like characteristics and have the ability to promote 5-FU resistance, proliferation, and metastasis of CRC cells. The study developed the Hypoxia-Related Macrophage Risk Score (HMRS), which not only served as an independent prognostic factor for CRC patients but also demonstrated robust prognostic performance compared to 84 previously published prognostic features. Patients with low HMRS were sensitive to fluorouracil, oxaliplatin (FOLFOX), and anti-PD-1 immunotherapy, while those with high HMRS showed resistance. Additionally, HMRS was identified as an independent prognostic factor in other digestive tract tumors (hepatocellular carcinoma, pancreatic cancer, esophageal cancer, and gastric cancer), indicating potential extrapolation to other tumor types. In conclusion, GPNMB+ Macr promotes the malignant progression of CRC, and HMRS serves as a powerful predictive tool for prognosis, chemotherapy, and immunotherapy in CRC patients, aiding in improving the quality of survival.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells.","authors":"Tosin A Olasehinde, Ademola O Olaniran","doi":"10.1002/tox.24418","DOIUrl":"https://doi.org/10.1002/tox.24418","url":null,"abstract":"<p><p>Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO<sub>2</sub>, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weilin Mao, Yan Liu, Wei Gu, Wenchao Xu, Jihong Liu, Qing Ling, Jiaxin Wang
{"title":"Se-Methylselenocysteine Ameliorates DEHP-Induced Ferroptosis in Testicular Sertoli Cells via the Nrf2/GPX4 Axis.","authors":"Weilin Mao, Yan Liu, Wei Gu, Wenchao Xu, Jihong Liu, Qing Ling, Jiaxin Wang","doi":"10.1002/tox.24425","DOIUrl":"https://doi.org/10.1002/tox.24425","url":null,"abstract":"<p><p>Di (2-ethylhexyl) phthalate (DEHP) is an important plasticizer in industrial production, and its toxic effects on testes are widely recognized. Se-methylselenocysteine (SMC) is a major selenium compound found in selenium-rich plants, which possesses unique biological properties such as antioxidants. However, the effect of SMC on DEHP-induced testicular injury and the specific mechanism remains unknown. In this study, 50 mice were randomly divided into 5 groups and were given corn oil (Control), DEHP, low-dose SMC (L-SMC), moderate-dose SMC (M-SMC), or high-dose SMC (H-SMC). The sperm quality of the mice in each group was determined, and HE staining and transmission electron microscopy (TEM) were applied to observe testicular morphology, and testicular tissues were collected for the subsequent molecular biological analyses. The TM4 cell line was applied in vitro for mechanism validation. Our results showed that DEHP could lead to decreased sperm quality and blood-testis barrier damage in mice, which could be alleviated by SMC. Mitochondrial damage accompanied by accumulation of total iron content, MDA, and 4-HNE, as well as downregulation of antioxidants SOD, GSH, and GSH-Px were observed after DEHP treatment, which exhibited a typical ferroptosis feature. In vitro experiments confirmed that SMC promoted upregulation of GPX4 in TM4 cells and was able to alleviate DEHP metabolite MEHP-induced ferroptosis and promote the expression of cell junction key proteins ZO-1, Occludin, and Connexin 43, which could be inhibited by the GPX4 inhibitor RSL3 or the Nrf2 inhibitor ML385. Overall, the above results suggest that SMC ameliorates the DEHP-induced ferroptosis in testicular Sertoli cells, protects the blood-testis barrier, and prevents sperm aberrations via the Nrf2/GPX4 axis.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raissa Rilo Christoff, Débora Santos da Silva, Rafael Ferreira Lima, Ana Luiza Meneguci Moreira Franco, Luiza Mendonça Higa, Átila Duque Rossi, Carolina Batista, Cherley Borba Vieira de Andrade, Tania Maria Ortiga‐Carvalho, Lucas Ascari, Bárbara de Azevedo Abrahim‐Vieira, Maria Bellio, Amilcar Tanuri, Flavia Martinez de Carvalho, Patricia Pestana Garcez, Flavio Alves Lara
{"title":"Prenatal Exposure to Herbicide 2,4‐Dichlorophenoxyacetic Acid (2,4D) Exacerbates Zika Virus Neurotoxicity In Vitro and In Vivo","authors":"Raissa Rilo Christoff, Débora Santos da Silva, Rafael Ferreira Lima, Ana Luiza Meneguci Moreira Franco, Luiza Mendonça Higa, Átila Duque Rossi, Carolina Batista, Cherley Borba Vieira de Andrade, Tania Maria Ortiga‐Carvalho, Lucas Ascari, Bárbara de Azevedo Abrahim‐Vieira, Maria Bellio, Amilcar Tanuri, Flavia Martinez de Carvalho, Patricia Pestana Garcez, Flavio Alves Lara","doi":"10.1002/tox.24424","DOIUrl":"https://doi.org/10.1002/tox.24424","url":null,"abstract":"Zika virus (ZIKV) infection during pregnancy can lead to a set of congenital malformations known as Congenital ZIKV syndrome (CZS), whose main feature is microcephaly. The geographic distribution of CZS in Brazil during the 2015–2017 outbreak was asymmetrical, with a higher prevalence in the Northeast and Central‐West regions of the country, despite the ubiquitous distribution of the vector <jats:italic>Aedes aegypti,</jats:italic> indicating that environmental factors could influence ZIKV vertical transmission and/or severity. Here we investigate the involvement of the most used agrochemicals in Brazil with CZS. First, we exposed human neuroblastoma SK‐N‐AS cells to the 15 frequently used agrochemical molecules or derivative metabolites able to cross the blood–brain barrier. We found that a derived metabolite from a widely used herbicide in the Central‐West region, 2,4‐dichlorophenoxyacetic acid (2,4D), exacerbates ZIKV neurotoxic effects in vitro. We validate this observation by demonstrating vertical transmission leading to microcephaly in the offspring of immunocompetent C57BL/6J mice exposed to water contaminated with 0.025 mg/L of 2,4D. Newborn mice whose dams were exposed to 2,4D and infected with ZIKV presented a smaller brain area and cortical plate size compared to the control. Also, embryos from animals facing the co‐insult of ZIKV and 2,4D exposition presented higher Caspase 3 positive cells in the cortex, fewer CTIP2+ neurons and proliferative cells at the ventricular zone, and a higher viral load. This phenotype is followed by placental alterations, such as vessel congestion, and apoptosis in the labyrinth and decidua. We also observed a mild spatial correlation between CZS prevalence and 2,4D use in Brazil's North and Central‐West regions, with <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.4 and 0.46, respectively. Our results suggest that 2,4D exposition facilitates maternal vertical transmission of ZIKV, exacerbating CZS, possibly contributing to the high prevalence of this syndrome in Brazil's Central‐West region compared to other regions.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Black Tea Suppresses Invasiveness and Reverses TNF-α-Induced Invasiveness and Cell Stemness in Human Malignant Melanoma Cells.","authors":"Chin-Yin Lin,Shu-Chen Chu,Yih-Shou Hsieh,Wen-Yi Tsai,Pei-Ni Chen","doi":"10.1002/tox.24423","DOIUrl":"https://doi.org/10.1002/tox.24423","url":null,"abstract":"Invasiveness and epithelial-mesenchymal transition (EMT) are main patterns of metastatic disease, which is the major cause cancer-related mortality in human malignant melanoma cells. Tea and its consumption extract are associated with a lower risk of several types of cancer and have anti-inflammatory and antioxidative biological effects. However, the anti-EMT and anti-cancer stemness effect of black tea ethanol extracts (BTEE) in human melanoma remain poorly understood. In this study, the effects of BTEE-reduced invasiveness, EMT, and cancer stemness were evaluated in human A 375 and A2058 melanoma cells. BTEE inhibited the activity of u-PA, migration, and invasiveness by repressing p-FAK signaling pathway. BTEE affected the EMT by downregulating the expression of β-catenin, N-cadherin, fibronectin, vimentin, and Twist-1. BTEE also reduced tumor necrosis factor-alpha (TNF-α)-induced invasiveness and cancer stemness characteristics in vitro. The growth of melanoma in nude mice xenograft model showed that BTEE suppressed A 375 tumor growth in vivo.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"Exosomal miRNA-166-5p Derived From G-MDSCs Promotes Proliferation by Targeting ITM3E in Colorectal Cancer\".","authors":"","doi":"10.1002/tox.24422","DOIUrl":"https://doi.org/10.1002/tox.24422","url":null,"abstract":"","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankita Jaikaria,Rakesh Kumar,R K Asrani,Smriti Jamwal,Abhishek Verma,Joshi Gaurav Santoshrao,Harsh Krishnakumar Bisen,Vikram Patial,Dixit Sharma,Rohit Kumar,Adarsh Kumar,R D Patil
{"title":"Unveiling the Anticarcinogenic Potential of Inula racemosa Hook. f. Root Extract Against DMBA-Induced Mammary Tumour in Sprague Dawley Rats.","authors":"Ankita Jaikaria,Rakesh Kumar,R K Asrani,Smriti Jamwal,Abhishek Verma,Joshi Gaurav Santoshrao,Harsh Krishnakumar Bisen,Vikram Patial,Dixit Sharma,Rohit Kumar,Adarsh Kumar,R D Patil","doi":"10.1002/tox.24419","DOIUrl":"https://doi.org/10.1002/tox.24419","url":null,"abstract":"The Himalayan plant Inula racemosa has medicinal properties and can be used to prevent or treat cancer. This is because it contains certain chemicals that are known to fight cancer cells with few or no side effects. I. racemosa has been used for this purpose for many years in traditional medicine and has shown promising results. The present study was crafted to explore the suppressive impacts on cellular proliferation of the root extract derived from I. racemosa via in vivo experimentation. I. racemosa (IR) root extract was tested at three different doses (100, 250, and 500 mg/Kg BW) for 18 weeks to assess its anti-neoplastic activity against mammary tumors in female rats. The assessment included various parameters such as hematological and biochemical indices, tumor parameters, oxidative stress analysis, gross and histopathological lesion determination, Masson's trichrome staining, immunohistochemical expression of Ki-67, MMP-9, and VEGF in mammary gland tissues, and molecular docking. The chemopreventive action of IR root extract was demonstrated by the inhibition of tumor parameters (tumor size and tumor volume), minimum changes in the liver (ALT, AST, and ALP) and kidney enzymes (BUN and creatinine), declined lipid peroxidation activity, decline gross, and histological changes in mammary gland tumors, reduced expression of KI-67, MMP-9, and VEGF and maximum binding affinity of isoalantolactone with VEGF through molecular docking. The study suggests that the active constituents (isoalantolactone and alantolactone) of I. racemosa roots have anti-neoplastic activity against mammary tumors, making them a valuable therapeutic regimen for the future.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenzheng Li, Jing Mu, Shanhong Ni, Wenlong Pei, Li Wan, Xin Wu, Jun Zhu, Zhan Zhang, Lei Li
{"title":"Pentachlorophenol Exposure Delays the Recovery of Colitis in Association With Altered Gut Microbiota and Purine Metabolism","authors":"Wenzheng Li, Jing Mu, Shanhong Ni, Wenlong Pei, Li Wan, Xin Wu, Jun Zhu, Zhan Zhang, Lei Li","doi":"10.1002/tox.24420","DOIUrl":"https://doi.org/10.1002/tox.24420","url":null,"abstract":"Pentachlorophenol (PCP) was used widely as preservative and biocide and has been banned due to with various harmful effects, such as carcinogenicity and teratogenicity. However, the effects of PCP on colitis induced by dextrose sodium sulfate (DSS) remain largely unknown. Serum metabolomics and gut microbiota were investigated to elucidate the underlying mechanisms. Exposure to 20 μg/L PCP aggravated DSS‐induced body weight loss, colon shortening, severe histological injuries, and upregulation of <jats:italic>TNFα</jats:italic>, <jats:italic>iNOS</jats:italic>, <jats:italic>IL‐1β</jats:italic>, and <jats:italic>IL‐6</jats:italic>. Serum metabolomics showed that both DSS and PCP could significantly disrupted tryptophan metabolism in normal mice. Interestingly, PCP exposure intensified the disturbance in purine metabolism but not tryptophan metabolism caused by DSS. Quantitative analysis of tryptophan and metabolites further confirmed that PCP exposure significantly increased the serum contents of serotonin, adenine, guanine, guanosine, inosine monophosphate (IMP), inosine, and hypoxanthine in DSS‐treated mice. The overall gut microbial community was significantly modified by PCP and DSS treatment alone. <jats:italic>Rikenellaceae_RC9_Gut_group</jats:italic>, <jats:italic>Colidextribacter</jats:italic>, and <jats:italic>Desulfovibrio</jats:italic> were more abundant in colitis mice following PCP exposure. Further integrative analysis of differential bacteria and purine metabolites highlighted a significant correlation between <jats:italic>Desulfovibrio</jats:italic> and several purine metabolites, including guanine, guanosine, hypoxanthine, IMP, and inosine. Adenosine ribonucleotides de novo biosynthesis, inosine‐5′‐phosphate biosynthesis I, and urate biosynthesis/inosine 5′‐phosphate degradation pathways were depleted in colitis mice upon PCP treatment. Taken together, PCP exposure delayed the recovery of colitis induced by DSS in association with altered gut microbiota and serum metabolites, which were enriched in tryptophan and purine metabolism.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RETRACTION: Serum Cadmium Positively Correlates With Inflammatory Cytokines in Patients With Chronic Obstructive Pulmonary Disease.","authors":"","doi":"10.1002/tox.24421","DOIUrl":"https://doi.org/10.1002/tox.24421","url":null,"abstract":"<p><strong>Retraction: </strong>Y.-L. Jiang, J. Fei, P. Cao, C. Zhang, M.-M. Tang, J.-Y. Cheng, H. Zhao, and L. Fu, \"Serum Cadmium Positively Correlates With Inflammatory Cytokines in Patients With Chronic Obstructive Pulmonary Disease,\" Environmental Toxicology 37, no. 1 (2022): 151-160, https://doi.org/10.1002/tox.23386. The above article, published online on 15 October 2021 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Paul B. Tchounwou; and Wiley Periodicals LLC. The retraction has been agreed upon following concerns raised by a third party regarding the data presented in the article. The authors collaborated on the investigation into the raised concerns and provided the underlying raw data for the presented study. An independent evaluation of the dataset revealed inaccuracies in the statistical analysis, which affected the interpretability of the results. Accordingly, the absence of demonstrated associations between age and chronic conditions, such as diabetes, hypertension, and metabolic disease, in the study's subjects raises serious doubts about the validity of the findings. Consequently, the editors have deemed the article's conclusions unreliable. The authors acknowledged the mistakes made during manuscript preparation and apologize for the inconvenience caused.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}