{"title":"环境相关浓度的商业二氧化钛纳米颗粒诱导huvec中的铁凋亡。","authors":"Fangfang Huang, Yashi Feng, Zi-An Wang, Yunchang Cao, Qiong Yan, Wuxiang Wang, Shaolong Feng","doi":"10.1002/tox.24517","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium dioxide nanoparticles (TiO<sub>2</sub>-NPs) have been ever increasingly exposed to people through all possible routes, while studies focusing on their potential cardiovascular risks are relatively lacking, especially the underlying biological mechanisms that are not yet elucidated. In this study, the ferroptotic effect of TiO<sub>2</sub>-NPs (30 nm) at environmentally relevant concentrations (0, 3, 12, and 48 μg/mL) on human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism were studied with the corresponding biochemical and molecular biology assays. The results showed that TiO<sub>2</sub>-NPs at the tested concentrations could reduce HUVEC viability, but ferrostatin-1 might rescue this reduction in cell viability. Also, TiO<sub>2</sub>-NPs exposure increased Fe<sup>2+</sup>, reactive oxygen species, and malondialdehyde, but decreased glutathione, mitochondrial membrane potential, and activities of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in HUVECs through an integrated signaling pathway. Meanwhile, enhanced p38 protein phosphorylation and keap1 protein and decreased Nrf2 protein phosphorylation with reductions in mRNA expressions of downstream anti-oxidative enzyme genes (catalase, superoxide dismutase, glutathione peroxidase, and phospholipid hydroperoxidase) were identified in the TiO<sub>2</sub>-NPs-exposed HUVECs. These indicated that TiO<sub>2</sub>-NPs exposure induced ferroptosis in HUVECs via the p38/keap1 inhibiting Nrf2 pathway. EC ferroptosis will be a promising biomarker for assessing the cardiovascular health risks of environmental contaminants.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmentally Relevant Concentrations of Commercial Titanium Dioxide Nanoparticles Induce Ferroptosis in HUVECs.\",\"authors\":\"Fangfang Huang, Yashi Feng, Zi-An Wang, Yunchang Cao, Qiong Yan, Wuxiang Wang, Shaolong Feng\",\"doi\":\"10.1002/tox.24517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium dioxide nanoparticles (TiO<sub>2</sub>-NPs) have been ever increasingly exposed to people through all possible routes, while studies focusing on their potential cardiovascular risks are relatively lacking, especially the underlying biological mechanisms that are not yet elucidated. In this study, the ferroptotic effect of TiO<sub>2</sub>-NPs (30 nm) at environmentally relevant concentrations (0, 3, 12, and 48 μg/mL) on human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism were studied with the corresponding biochemical and molecular biology assays. The results showed that TiO<sub>2</sub>-NPs at the tested concentrations could reduce HUVEC viability, but ferrostatin-1 might rescue this reduction in cell viability. Also, TiO<sub>2</sub>-NPs exposure increased Fe<sup>2+</sup>, reactive oxygen species, and malondialdehyde, but decreased glutathione, mitochondrial membrane potential, and activities of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in HUVECs through an integrated signaling pathway. Meanwhile, enhanced p38 protein phosphorylation and keap1 protein and decreased Nrf2 protein phosphorylation with reductions in mRNA expressions of downstream anti-oxidative enzyme genes (catalase, superoxide dismutase, glutathione peroxidase, and phospholipid hydroperoxidase) were identified in the TiO<sub>2</sub>-NPs-exposed HUVECs. These indicated that TiO<sub>2</sub>-NPs exposure induced ferroptosis in HUVECs via the p38/keap1 inhibiting Nrf2 pathway. EC ferroptosis will be a promising biomarker for assessing the cardiovascular health risks of environmental contaminants.</p>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/tox.24517\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24517","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Environmentally Relevant Concentrations of Commercial Titanium Dioxide Nanoparticles Induce Ferroptosis in HUVECs.
Titanium dioxide nanoparticles (TiO2-NPs) have been ever increasingly exposed to people through all possible routes, while studies focusing on their potential cardiovascular risks are relatively lacking, especially the underlying biological mechanisms that are not yet elucidated. In this study, the ferroptotic effect of TiO2-NPs (30 nm) at environmentally relevant concentrations (0, 3, 12, and 48 μg/mL) on human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism were studied with the corresponding biochemical and molecular biology assays. The results showed that TiO2-NPs at the tested concentrations could reduce HUVEC viability, but ferrostatin-1 might rescue this reduction in cell viability. Also, TiO2-NPs exposure increased Fe2+, reactive oxygen species, and malondialdehyde, but decreased glutathione, mitochondrial membrane potential, and activities of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in HUVECs through an integrated signaling pathway. Meanwhile, enhanced p38 protein phosphorylation and keap1 protein and decreased Nrf2 protein phosphorylation with reductions in mRNA expressions of downstream anti-oxidative enzyme genes (catalase, superoxide dismutase, glutathione peroxidase, and phospholipid hydroperoxidase) were identified in the TiO2-NPs-exposed HUVECs. These indicated that TiO2-NPs exposure induced ferroptosis in HUVECs via the p38/keap1 inhibiting Nrf2 pathway. EC ferroptosis will be a promising biomarker for assessing the cardiovascular health risks of environmental contaminants.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.