{"title":"SERPING1 Reduces Cell Migration via ERK-MMP2-MMP-9 Cascade in Sorafenib- Resistant Hepatocellular Carcinoma","authors":"Ching-Chuan Hsieh, Yuh-Harn Wu, Yi-Li Chen, Chun-I Wang, Chao-Jen Li, I-Hsiu Liu, Chen-Wei Chou, Yang-Hsiang Lin, Po-Shuan Huang, Te-Chia Huang, Cheng-Yi Chen","doi":"10.1002/tox.24434","DOIUrl":"10.1002/tox.24434","url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant tumor, and it ranks 2nd in terms of mortality rate among all malignancies in Taiwan. Sorafenib is a multiple tyrosine kinase inhibitor that suppresses tumor cell proliferation and angiogenesis around tumors via different pathways. However, the survival outcome of advanced HCC patients treated with sorafenib is still unsatisfactory. Unfortunately, there are no clinically applicable biomarkers to predict sorafenib therapeutic efficiency in HCC thus far. We found that serpin peptidase inhibitor, clade G, member 1 (SERPING1) is highly associated with overall and recurrence-free survival rates in HCC patients and is also highly correlated with several clinical parameters. SERPING1 expression was increased with sorafenib in both the HCC cell extract and conditioned medium, which was also observed in sorafenib-resistant HepG2 and Huh7 cells. Sorafenib decreased cell viability and migration, which was similar to the effect of SERPING1 in HCC progression. Moreover, sorafenib inhibited both MMP-2 and MMP-9 activity and enhanced the expression of p-ERK in HCC cells. In summary, sorafenib reduces HCC cancer progression might through the p-ERK-MMP-2-MMP-9 cascade via upregulation of SERPING1. In the present study, the roles and molecular mechanisms of SERPING1 and its value as a marker for predicting sorafenib resistance and progression in HCC patients were examined. The results of the present study provide a deep understanding of the roles of SERPING1 in HCC sorafenib resistance, which can be applied to develop early diagnosis and prognosis evaluation methods and establish novel therapeutic targets for specifically treating HCC.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"40 2","pages":"318-327"},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “Inflammatory Response and Endothelial Dysfunction in the Hearts of Mice Co-Exposed to SO2, NO2, and PM2.5”","authors":"","doi":"10.1002/tox.24432","DOIUrl":"10.1002/tox.24432","url":null,"abstract":"<p>\u0000 <span>Zhang, Y.</span>, <span>Ji, X.</span>, <span>Ku, T.</span> and <span>Sang, N.</span> (<span>2016</span>), <span>Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO<sub>2</sub>, NO<sub>2</sub>, and PM<sub>2.5</sub>\u0000 </span>. <i>Environmental Toxicology</i>, <span>31</span>: <span>1996</span>–<span>2005</span>. https://doi.org/10.1002/tox.22200.\u0000 </p><p>In Figure 4 of the original paper, there was a misuse of the picture that occurred in the low-dose group (A2), and the corrected Figure 4 is presented here.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"40 2","pages":"361"},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tox.24432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increased Susceptibility of Cardiac Tissue to PM\u0000 2.5-Induced Toxicity in Uremic Cardiomyopathic Rats Is Linked to Elevated Levels of Mitochondrial Dysfunction","authors":"Bhavana Sivakumar, Gino A Kurian","doi":"10.1002/tox.24437","DOIUrl":"10.1002/tox.24437","url":null,"abstract":"<div>\u0000 \u0000 <p>Patients with chronic kidney disease (CKD) frequently develop uremic cardiomyopathy, characterized by mitochondrial dysfunction as one of its pathologically significant mediators. Given that PM<sub>2.5</sub> specifically targets cardiac mitochondria, exacerbating toxicity, this study addresses the potential alterations in the severity of PM<sub>2.5</sub> toxicity in the context of CKD conditions. Female Wistar rats were exposed to PM<sub>2.5</sub> at a concentration of 250 μg/m<sup>3</sup> daily for 3 h for 21 days after which an adenine-induced CKD model was developed. While both PM<sub>2.5</sub> exposure and the induction of CKD in rats lead to cardiomyopathy, the CKD animals exposed to PM<sub>2.5</sub> exhibited a notably severe extent of myocardial hypertrophy and fibrosis. ECG recordings in CKD+ PM<sub>2.5</sub> animals revealed a depressed ST segment and prolonged QRS interval, with both PM<sub>2.5</sub> and CKD animals displaying an elevated ST segment. Subcellular level analysis confirmed a significantly low mitochondrial copy number and a severe decline in mitochondrial bioenergetic function in the CKD+ PM<sub>2.5</sub> group. The prominent decline in PGC1-α further affirmed the severe mitochondrial functional deterioration in CKD+ PM<sub>2.5</sub> animals compared to other experimental groups. Additionally, myocardial calcification was enhanced in CKD+ PM<sub>2.5</sub> animals, heightening the susceptibility of CKD animals to PM<sub>2.5</sub> toxicity. In summary, our findings suggest that the increased vulnerability of CKD myocardium to PM<sub>2.5</sub>-induced toxicity may be attributed to severe mitochondrial damage and increased calcification in the myocardium.</p>\u0000 </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"40 4","pages":"532-548"},"PeriodicalIF":4.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}