Sara Y. M. Watanabe, Larissa F. Ferreira, Marília R. P. Cruz, Ana P. A. Araújo, Og Desouza, Paulo F. Cristaldo
{"title":"It is not only group size: Soldiers also modulate the tolerance to insecticide in termites (Blattodea: Isoptera)","authors":"Sara Y. M. Watanabe, Larissa F. Ferreira, Marília R. P. Cruz, Ana P. A. Araújo, Og Desouza, Paulo F. Cristaldo","doi":"10.1111/ens.12546","DOIUrl":"10.1111/ens.12546","url":null,"abstract":"<p>The survivorship of social insects is known to increase with group size, even in situations of stress, such as starvation and exposure to insecticides. However, in termites, studies have been undertaken only with workers, disregarding the possible effect of soldiers. The role of soldiers in the termite colonies goes beyond defense, mainly in <i>Nasutitermes</i> species. It is already known that soldiers initiate the foraging as well as improve the decision-making of food resources. Here, we evaluated the effect of group size and the presence of soldiers on exposure to sublethal doses of the insecticide imidacloprid in <i>Nasutitermes corniger</i> (Termitidae: Nasutitermitinae). To do so, toxicity bioassays were undertaken initially to determine the dose of the insecticide required to kill 50% of the <i>N. corniger</i> population (LD<sub>50</sub>) to be used in the main experiments. Survival bioassays were then carried out with termite groups, with and without soldiers, in different sizes (6, 10, 14, 22, 26, 30 and 60), exposed and nonexposed to insecticide. In general, the mean time to death of termites increases linearly with group size. However, the mean time to death in groups with soldiers was significantly longer only in groups exposed to the insecticide. Our results indicate that soldiers can help to increase the tolerance of nasute termite groups to insecticides, in addition to the group size, as already shown in the previous study. The size of the group and social context could, therefore, modulate behavioral and/or physiological responses that enhance the ability to survive under stressful situations.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 2","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43212587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The second phantom aquatic leaf beetle in Japan: Macroplea mutica rediscovery in the wetlands (Coleoptera: Chrysomelidae)","authors":"Naoyuki Nakahama, Ryosuke Okano, Yuichiro Nishimoto, Yusuke Nakatani, Asato Noishiki, Naoki Ogawa","doi":"10.1111/ens.12545","DOIUrl":"10.1111/ens.12545","url":null,"abstract":"<p>Wetland biodiversity is currently declining on a global scale. Wetland biodiversity understanding is critical for determining the wetlands' conservation value. In this study, <i>Macroplea</i> Samouelle, 1819 (Coleoptera: Chrysomelidae) was discovered in Aomori Prefecture, Honshu Island, Japan. Only two <i>Macroplea</i> species have been recorded in Japan, <i>M. japana</i> (Jacoby, 1885) and <i>M. mutica</i> (Fabricius, 1792). <i>Macroplea japana</i> had been unrecorded for 60 years before being rediscovered in Honshu Island in 2022, and a single adult <i>M. mutica</i> female was discovered in Hokkaido Prefecture in 2003. The discovered individuals were concluded to be <i>M. mutica</i> based on morphological and molecular analyses. Although morphological differences were observed with the Eurasian <i>M. mutica</i> individuals, the male genitalia was nearly identical to <i>M. mutica.</i> For the molecular phylogenetic analysis based on <i>COI</i> and <i>28S</i> sequences, <i>Macroplea</i> individuals in Japan were clustered with <i>M. mutica</i> on the Eurasian Continent. This is the first record of this species on Honshu Island (and the second in Japan), as well as the first record of adult males. This species would require conservation policies and additional distributional surveys.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 2","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44815589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Notes on the foraging habits of adult Protohermes dobsonflies (Megaloptera: Corydalidae): Further evidence for anthophilous megalopterans","authors":"Naoto Sugiura, Kei-ichiro Shikata, Satoshi Miyazaki","doi":"10.1111/ens.12542","DOIUrl":"10.1111/ens.12542","url":null,"abstract":"As in other megalopterans, the life of adult dobsonflies in the natural habitats remains largely unexplored. Here, we report the foraging habits of the nocturnal dobsonflies Protohermes grandis and Protohermes immaculatus. Our field observations from a close distance revealed that adult P. grandis feeds on the floral nectar of the Japanese chestnut Castanea crenata (Fagaceae). Moreover, based on strong circumstantial evidence (the finding of a dozen pollen‐bearing adults and their pollen‐containing excrement), we concluded that adult P. immaculatus routinely visit the flowers of Schima wallichii ssp. noronhae (Theaceae). The present study is the first one to document floral resource utilization by adult dobsonflies in their natural habitats, and provides further evidence for anthophilous corydalids. We have briefly discussed why the flower‐visiting habits of corydalids have been missed so far.","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47003514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of male–female relatedness on aggression and inbreeding in an egg parasitoid wasp","authors":"Si-Yu Yin, Yu-Mei Tao, Peng-Cheng Liu","doi":"10.1111/ens.12541","DOIUrl":"10.1111/ens.12541","url":null,"abstract":"<p>Aggressive behavior is important for acquiring crucial resources in many animals. As such behavior is costly, selection favors contestants that can accurately gather information regarding the likely costs and benefits of conflict to enable appropriate tactical decisions. Mate choice based on relatedness is widespread among animals and has severe consequences. Theoretically, due to the potential costs of inbreeding, contestants may benefit from discriminating between relative and nonrelative mates and adjusting their behavior accordingly. If inbreeding results in fitness costs, related mates might be perceived as less valuable and individuals might be expected to invest less in costly aggression, and vice versa. However, the role of male–female relatedness in aggression has been less addressed. The egg parasitoid wasp <i>Anastatus disparis</i>, which exhibits extreme male–male aggressive behavior for mating opportunities, was used as an experimental model to explore the role of male–female relatedness in aggression. Inconsistent with our prediction, male–female relatedness had no significant effect on male–male fighting frequency or intensity in <i>A. disparis</i>. The ability of males to discriminate relative from nonrelative females is a prerequisite for male–female relatedness to affect males’ aggression. However, <i>A. disparis</i> males did not exhibit any mating preferences for relative or nonrelative females. Besides, inbreeding did not result in depression in terms of longevity, fecundity or sex ratio in <i>A. disparis</i>. Our finding of no effect of male–female relatedness on male–male fights in <i>A. disparis</i> may be caused by a lack of kin discrimination ability or/and a lack of benefits from discriminating relatives from nonrelatives.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43220042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phylogenetic and morphological analyses of Japanese Aquarius water strider, with a new synonym","authors":"Naoki Hiraishi, Tomoya Suzuki, Ryosuke Matsushima, Shin-ya Ohba","doi":"10.1111/ens.12544","DOIUrl":"10.1111/ens.12544","url":null,"abstract":"<p>The genus <i>Aquarius</i>, of the subfamily Gerrinae, was formerly divided into two species and one subspecies in Japan (<i>A</i>. <i>paludum paludum</i>, <i>A</i>. <i>paludum amamiensis</i> and <i>A</i>. <i>elongatus</i>, respectively). <i>Aquarius haliplous</i> Yasunaga et al. 2018 has recently been described as a new species, which occurs in brackish waters of Nagasaki Prefecture and is found sympatrically with the widely distributed species, <i>A</i>. <i>p</i>. <i>paludum</i>. However, they are considered to be speciated, with no cross-breeding. In this study, molecular phylogenetic and morphological analyses were undertaken using the mitochondrial DNA <i>COI</i> (529 bp) and nuclear DNA histone H3 (314 bp) gene regions to investigate the genetic and morphological differentiation in the genus <i>Aquarius</i>, including <i>A</i>. <i>haliplous</i>, throughout Japan (including the islands). The results show that, unlike <i>A</i>. <i>p</i>. <i>paludum</i>, <i>A</i>. <i>p</i>. <i>amamiensis</i> and <i>A</i>. <i>haliplous</i>, <i>A</i>. <i>elongatus</i> displays substantial genetic differentiation. Considering that, although morphological differences exist in the antennae of <i>A</i>. <i>p</i>. <i>paludum</i> and <i>A</i>. <i>p</i>. <i>amamiensis</i>, <i>A</i>. <i>haliplous</i> has no clear genetic or morphological difference from <i>A</i>. <i>p</i>. <i>paludum</i>, and hence cannot be classified as a distinct species. Therefore, we propose that <i>A</i>. <i>haliplous</i> be synonymized with <i>A</i>. <i>paludum</i>.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43096265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shigeki Ogata, Atsuhiro Nishiwaki, Kanji Yamazoe, Kyoko Sugai, Teruhiko Takahara
{"title":"Discovery of unknown new ponds occupied by the endangered giant water bug Kirkaldyia deyrolli (Hemiptera: Heteroptera: Belostomatidae) by combining environmental DNA and capture surveys","authors":"Shigeki Ogata, Atsuhiro Nishiwaki, Kanji Yamazoe, Kyoko Sugai, Teruhiko Takahara","doi":"10.1111/ens.12540","DOIUrl":"10.1111/ens.12540","url":null,"abstract":"Basic ecological information (e.g. habitat or distribution) is indispensable for conserving endangered species. The giant water bug Kirkaldyia deyrolli is an aquatic insect in the large stink bug family (Belostomatidae). It inhabits ponds and is a critically endangered species. In this study, we developed a species‐specific primer–probe set (the cytochrome c oxidase I region in mitochondrial DNA) that was used in real‐time polymerase chain reaction (PCR) assays to detect K. deyrolli environmental DNA (eDNA). Next, using eDNA analysis, we investigated the presence of K. deyrolli in 89 study ponds (including one pond that had already been identified as the habitat of this species) in Shimane Prefecture, Japan. The eDNA of K. deyrolli was detected in 11 of these 89 ponds. Furthermore, when the traditional method of direct capture survey was carried out in four of the 10 ponds where K. deyrolli eDNA had been detected and no prior occupancy information for this species was available, the capture of one K. deyrolli (female) was successful in only one pond. This study showed that combining eDNA analysis and direct capture methods can lead to discovering previously unknown habitats essential for conserving an endangered species.","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45132588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Myrmecophily of Horniolus fortunatus (Coleoptera: Coccinellidae)","authors":"Hiroyuki Yoshitomi","doi":"10.1111/ens.12543","DOIUrl":"10.1111/ens.12543","url":null,"abstract":"<p>The biology of <i>Horniolus fortunatus</i> (Lewis, 1896) has been fragmentarily reported, but what the larvae and adults feed on and the immature stages are still unknown. In this article, I report that this coccinellid adult and larva feed on mealybugs (<i>Planococcus</i> sp.) living in the nest of the ant <i>Crematogaster matsumurai</i> Forel, 1901.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45762510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Myrmecophily of the enigmatic stag beetle Torynognathus chrysomelinus (Coleoptera: Lucanidae: Lucaninae) with remarks on adult morphology, immature stages, and systematic position","authors":"Showtaro Kakizoe, Shunsuke Kakinuma, Konosuke Hoshino, Rosli Hashim, Nurul Ashikin Abdullah, Munetoshi Maruyama","doi":"10.1111/ens.12539","DOIUrl":"10.1111/ens.12539","url":null,"abstract":"<p>Adults and various immature stages of the stag beetle <i>Torynognathus chrysomelinus</i> Bomans, 1986 were found inside the nests of <i>Pseudolasius</i> ants in Peninsular Malaysia. This paper provides a detailed description of <i>T. chrysomelinus</i>, which is the first ever record of myrmecophily in this genus and the third record in the family Lucanidae. This is also the first record of myrmecophilous Coleoptera with <i>Pseudolasius</i> ants as a host. The description includes the illustration of the male genitalia, mouthparts, larva, and pupa of this genus for the first time. Furthermore, the systematic position of <i>T. chrysomelinus</i> was inferred by the molecular phylogenetic analysis of the family Lucanidae. The results suggest that <i>Torynognathus</i> is a sister taxon to the genus <i>Aegus</i>.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48860571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The phylogeography of the stag beetle Dorcus montivagus (Coleoptera, Lucanidae): Comparison with the phylogeography of its specific host tree, the Japanese beech Fagus crenata","authors":"Gaku Ueki, Koji Tojo","doi":"10.1111/ens.12535","DOIUrl":"10.1111/ens.12535","url":null,"abstract":"<p><i>Dorcus montivagus</i> is a Japanese endemic stag beetle that feeds exclusively on dead beech wood, and its distribution is almost completely coincidental with that of beech forests. Japanese beech, <i>Fagus crenata</i>, is the dominant tree species of the cool-temperate deciduous broad-leaved forests in Japan. Historical changes in the distribution of beech forests due to Pleistocene climate change are expected to have also affected the phylogeographic structures of dependent beech-feeding phytophagous insects. In this study, we elucidated the present phylogeographic structures of <i>D. montivagus</i> using molecular markers, and also compared them with the present geographic genetic structures of beech tress and the post-glacial distribution as inferred by pollen fossil analyses. It was found that <i>D. montivagus</i> is largely differentiated into two phylogenetic clades: Clade I consisted of populations from Hokkaido, Honshu and Shikoku, and Clade II consisted only of Kyushu populations. Furthermore, the genetic diversity of the stag beetle showed a geographically declining gradient from south-west to north-east, consistent with the genetic variation observable in Japanese beech. Genetic differentiation between the Sea of Japan side and the Pacific Ocean side populations was also observed in both clades of the stag beetle. These results indicate a similar phylogeographic structure between the stag beetle and Japanese beech. Therefore, the distributional changes in Japanese beech correspondingly restricted the migratory dispersal of <i>D. montivagus</i>, and strongly influenced its phylogeographic structure.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42421573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional, genetic, and structural constraints on the exaggeration and diversification of male genital morphology in Ohomopterus ground beetles","authors":"Karen Terada, Sougo Takahashi, Yasuoki Takami","doi":"10.1111/ens.12538","DOIUrl":"10.1111/ens.12538","url":null,"abstract":"<p>The evolution of exaggerated sexual traits may be possible by the relaxation of various constraints on exaggeration. Functional constraints refer to the reduced performance of exaggerated traits <i>per se</i> or increased survival costs by holding the exaggerated traits. Genetic constraints, such as genetic correlations or pleiotropy, may hinder the independent evolution and exaggeration of traits. Structural constraints, such as competition for space and resources among traits, may require the coordination of the exaggerated trait with surrounding structures. The remarkable diversity of male genital morphology provides an ideal opportunity for examining constraints on sexual trait exaggeration. In this study, we addressed the constraints on the evolution of exaggerated male genital morphology based on a comparative analysis of phenotypic covariation between the genitalia and other body parts using <i>Ohomopterus</i> ground beetles. We found that exaggerated male genitalia were related to a relaxation of functional constraint, as revealed by a steeper allometric slope in the species with exaggerated male genitalia. By contrast, genetic constraint based on a shared genetic basis for the male genitalia and other appendages may have little effect on diversification in male genitalia. Structural constraints were strongest in the species with the most exaggerated male genitalia, suggesting that the observed constraint was a result of exaggeration. These findings improve our understanding of sexual trait exaggeration and underlying constraints.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"26 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43259023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}