Environmental Technology & Innovation最新文献

筛选
英文 中文
A calibration approach for a passive sampler based on a polymer inclusion membrane (PIM) for in situ Zn monitoring in Catalan rivers
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-12 DOI: 10.1016/j.eti.2025.104082
Berta Alcalde, Clàudia Fontàs, Enriqueta Anticó
{"title":"A calibration approach for a passive sampler based on a polymer inclusion membrane (PIM) for in situ Zn monitoring in Catalan rivers","authors":"Berta Alcalde,&nbsp;Clàudia Fontàs,&nbsp;Enriqueta Anticó","doi":"10.1016/j.eti.2025.104082","DOIUrl":"10.1016/j.eti.2025.104082","url":null,"abstract":"<div><div>Time-weighted average (TWA) concentrations of Zn(II) were monitored in a mine-contaminated river in Catalonia (the Osor) by an in situ sampling point-specific kinetic calibration using a polymer inclusion membrane (PIM)-passive sampler. The PIM was composed of a polymer, cellulose triacetate (CTA), an extractant, di-(2-ethylhexyl) phosphoric acid (D2EHPA), and a plasticizer, 2-nitrophenyl octyl ether (NPOE), to allow the transport and preconcentration of free Zn species from the sampling medium to the receiving phase (0.01 mol L<sup>−1</sup> HNO<sub>3</sub> solution). Calibration was conducted by measuring the initial permeability under controlled laboratory conditions and by performing in situ kinetics at two different sampling points in the river. Sampling rates (R<sub>s</sub>) of the PIM-passive sampler were also calculated, yielding results ranging from 1.7 × 10<sup>−10</sup> to 3.0 × 10<sup>−10</sup> m<sup>3</sup> s<sup>−1</sup> for laboratory experiments and R<sub>s</sub> values of 1.6 × 10<sup>−10</sup> and 1.8 × 10<sup>−9</sup> m<sup>3</sup> s<sup>−1</sup> for in situ studies. The in situ calculated P<sub>0</sub> (initial permeability) was used as the calibration approach to determine the TWA concentrations of Zn in the Osor River in subsequent sampling campaigns, and values between 2 × 10<sup>−7</sup> and 1.59 × 10<sup>−5</sup> mol L<sup>−1</sup> of Zn were obtained. The PIM-passive sampler was then used to screen for Zn pollution in several other rivers without any evidence of pollution by this metal being found.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104082"},"PeriodicalIF":6.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petaloid MoS2@MIL-88B(Fe) nanocomposite photocatalyst utilized to achieve accurate SWASV detection of Cd2+ and Pb2+ in water under low-pressure ultraviolet irradiation
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-11 DOI: 10.1016/j.eti.2025.104078
Renjie He , Liya Feng , Shaowen Chen , Shijie Zhang , Yujie Shi , Ning Liu , Gang Liu , Xiande Zhao , Guo Zhao
{"title":"Petaloid MoS2@MIL-88B(Fe) nanocomposite photocatalyst utilized to achieve accurate SWASV detection of Cd2+ and Pb2+ in water under low-pressure ultraviolet irradiation","authors":"Renjie He ,&nbsp;Liya Feng ,&nbsp;Shaowen Chen ,&nbsp;Shijie Zhang ,&nbsp;Yujie Shi ,&nbsp;Ning Liu ,&nbsp;Gang Liu ,&nbsp;Xiande Zhao ,&nbsp;Guo Zhao","doi":"10.1016/j.eti.2025.104078","DOIUrl":"10.1016/j.eti.2025.104078","url":null,"abstract":"<div><div>Humic acid (HA) is an organic compound in natural water and can be complexed with heavy metal ions (HMIs), which interferes with the detection of square wave anodic stripping voltammetry (SWASV). In this study, a petaloid MoS<sub>2</sub>@MIL-88B(Fe) nanocomposite was synthesized via hydrothermal synthesis. Leveraging its ability to generate active species under low-pressure ultraviolet (LPUV) irradiation, a MoS<sub>2</sub>@MIL-88B(Fe)/LPUV-based pretreatment method was proposed to detect HMIs in water by disrupting the complexation between HA and HMIs, thus restoring the SWASV signals of HMIs. The microstructure, crystal structure, surface chemical state, band gap, photogenerated charge separation and recombination rates of MoS<sub>2</sub>@MIL-88B(Fe) were investigated, along with the degradation kinetics of HA, byproducts, and active species generated during pretreatment, to elucidate both the mechanism behind the disruption of HA-HMIs complexation and the restoration of SWASV signals. Additionally, the key pretreatment parameters, such as pH, the MoS<sub>2</sub> to MIL-88B(Fe) mass ratio, the photocatalyst concentration, and the photolysis time, were optimized for the choice signal restoration ratio. The proposed MoS<sub>2</sub>@MIL-88B(Fe)/LPUV-based pretreatment method was applied to real water samples, yielding a root mean square error (RMSE) of less than 0.2 μg/L compared with that of the national standard method, confirming its authenticity and feasibility.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104078"},"PeriodicalIF":6.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of organic farming practices on soil health improvement of coconut farms
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-11 DOI: 10.1016/j.eti.2025.104067
Nguyen Khoi Nghia , Javad Robatjazi , Vo Duyen Thao Vy , Hüseyin Barış Tecimen , Hendra Gonsalve W. Lasar , Didier Lesueur , Shahla Hosseini Bai , Huu-Tuan Tran , Nguyen Huu Thien , Do Thanh Luan
{"title":"Effect of organic farming practices on soil health improvement of coconut farms","authors":"Nguyen Khoi Nghia ,&nbsp;Javad Robatjazi ,&nbsp;Vo Duyen Thao Vy ,&nbsp;Hüseyin Barış Tecimen ,&nbsp;Hendra Gonsalve W. Lasar ,&nbsp;Didier Lesueur ,&nbsp;Shahla Hosseini Bai ,&nbsp;Huu-Tuan Tran ,&nbsp;Nguyen Huu Thien ,&nbsp;Do Thanh Luan","doi":"10.1016/j.eti.2025.104067","DOIUrl":"10.1016/j.eti.2025.104067","url":null,"abstract":"<div><div>The present study aimed to provide data on what extend of organic management (OF) improve soil health compared to conventional farms (CF). In this study, a total of 24 top soil samples (0–30 cm) were collected from Mo Cay Nam and Mo Cay Bac, Ben Tre, Vietnam, representing organic vs conventional farm soils, respectively to analyze farming systems in terms of the chemical, physical, and biological soil properties. Soil nutrients, soil microbial density, dehydrogenase enzyme activity and soil bacteria diversity were detected using atomic absorption spectrometry, serial dilution and plating; triphenyl formazan detection, and DNA extraction using Invitrogen™ and Qubit™, respectively. Our results indicated that soil bulk density was 11 % lower and soil porosity was 4 % higher, respectively at organic farms compared to the conventional farms. Meanwhile, both soil NH<sub>4</sub><sup>+</sup> and available phosphorus contents were higher in the organic farming soils (38.9 mg kg<sup>−1</sup> and 69.0 mg kg<sup>−1</sup>, respectively). Total soil bacteria and cellulose-decomposing bacteria were found to be insignificantly lower in conventional farms (CF) as compared to organic farms (OF) (6.01 log CFU g<sup>−1</sup> soil vs 6.26 log CFU g<sup>−1</sup> soil) and (3.82 log CFU g<sup>−1</sup> soil vs 4.18 log CFU g<sup>−1</sup> soil), respectively. The beta diversity of soil bacterial community, along with the bacterial orders <em>Bacillales, Frankiales, Elsterales, Pseudomonadales</em>, and <em>Pedosphaerales</em> exhibited higher with organic farming practices and dehydrogenase enzyme activity in organic farms (OF) was significantly higher (0.61 µg TPF g<sup>−1</sup> soil hour<sup>−1</sup>) as compared to 0.47 µg TPF g<sup>−1</sup> soil hour<sup>−1</sup> in conventional farms (CF). This study demonstrates the benefits of organic management on soil health in coconut plantations and promotes the overall health of coconut orchards.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104067"},"PeriodicalIF":6.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grafting on rootstocks with low Cd accumulating potential: A green technology in vegetable production
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-11 DOI: 10.1016/j.eti.2025.104077
Na Sun , Fangao Zhu , Liang Sun , Guoyuan Zou , Hong Li
{"title":"Grafting on rootstocks with low Cd accumulating potential: A green technology in vegetable production","authors":"Na Sun ,&nbsp;Fangao Zhu ,&nbsp;Liang Sun ,&nbsp;Guoyuan Zou ,&nbsp;Hong Li","doi":"10.1016/j.eti.2025.104077","DOIUrl":"10.1016/j.eti.2025.104077","url":null,"abstract":"<div><div>Recently, grafting with certain rootstock cultivars has been observed to significantly reduce Cd accumulation in above ground plant tissues. However, the mechanism remains unclear. This study comprehensively evaluated the influencing factors and their contribution in affecting Cd uptake and translocation in grafted tomato plants. One tomato scion cultivar ‘Jingcai 8’ was grafted onto two rootstock cultivars ‘Guozhen 1’ and ‘Zhenai 1’ to evaluate the grafting effect on plant Cd uptake and translocation on Cd contaminated soil. The results demonstrated that grafting with ‘Guozhen 1’ and ‘Zhenai 1’ significantly enhanced plant growth and fruit biomass. Grafted rootstocks recruited microbes, which reduced rhizosphere Cd bioavailability. However, the reduction of soil Cd bioavailability was offset by enhanced root growth which contributed to root Cd uptake. The significantly increased root biomass and fine root length in the rootstocks resulted in significantly higher root Cd uptake than in the non-grafted treatment by 6.35–20.40 %. Nevertheless, grafting with ‘Zhenai 1’ had a significantly low translocation of Cd from root to fruit (TF of 0.015) than the non-grafted treatment (TF of 0.019), which resulted in a significant reduction in fruit Cd content by 17.54 %. This was due to the effects of grafting with rootstock ‘Zhenai 1’ that reduced Cd mobility by increasing GSH and decreasing subcellular distribution in cytoplasm. Fruit Cd content was the net result of root uptake and translocation. These results showed that grafting with a suitable rootstock is a promising green and low-cost approach for the production of safe vegetables on Cd-contaminated soil.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104077"},"PeriodicalIF":6.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial and biofilm inhibition of Helicobacter pylori using green synthesized MWCNTs/ZnO/Chitosan nanocomposites
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-11 DOI: 10.1016/j.eti.2025.104068
Saeid Fallahizadeh , Mahmood Yousefi , Ahmad Ghasemi , Seyed Abdolmohammad Sadat , Mahnaz Mohtashemi , Alieh Rezagholizade-shirvan , Mohsen Naghmachi
{"title":"Antibacterial and biofilm inhibition of Helicobacter pylori using green synthesized MWCNTs/ZnO/Chitosan nanocomposites","authors":"Saeid Fallahizadeh ,&nbsp;Mahmood Yousefi ,&nbsp;Ahmad Ghasemi ,&nbsp;Seyed Abdolmohammad Sadat ,&nbsp;Mahnaz Mohtashemi ,&nbsp;Alieh Rezagholizade-shirvan ,&nbsp;Mohsen Naghmachi","doi":"10.1016/j.eti.2025.104068","DOIUrl":"10.1016/j.eti.2025.104068","url":null,"abstract":"<div><div><em>Helicobacter pylori</em>, a Gram-negative bacterium, is a major cause of gastritis, peptic ulcers and gastric cancer. Its biofilm formation and antibiotic resistance in patients make it difficult for<!--> <!--> treatment. This study concerned the synthesis and antibacterial and antibiofilm evaluation<!--> <!-->of MWCNTs/ZnO/Chitosan nanocomposite against <em>H. pylori.</em> Green synthesis methods were used to<!--> <!-->develop the nanocomposite based on the formation of ZnO nanoparticles and the functionalization of MWCNTs. The XRD, SEM, TEM, and FTIR characteristics<!--> <!-->revealed the structural stability and the successful integration of ZnO, MWCNTs, and chitosan into the composite. The results indicated that the MIC values for ZnO nanoparticles ranged from 25 to 50 μg/mL, while those for chitosan were above 100 μg/mL. Additionally, the MWCNTs/ZnO/Chitosan nanocomposite exhibited the lowest MIC values, with 12.5 μg/mL for <em>H. pylori</em> clinical isolate 1 and 25 μg/mL for <em>H. pylori</em> clinical isolate 2 and <em>H. pylori</em> ATCC 43504 strains. MIC tests showed that the nanocomposite had better antibacterial activity, therefore having lower MIC values than normal antibiotics like metronidazole (MNZ) and clarithromycin (CLR) as well as its components. ZnO-induced reactive oxygen species (ROS), chitosan's bacterial membrane interaction, and MWCNTs part in improved nanoparticle distribution and mechanical biofilm disturbance all contributed to the antimicrobial mechanisms. The research points out the MWCNTs/ZnO/Chitosan nanocomposite as a hopeful solution for antibiotic-resistant <em>H. pylori</em> bacteria causes further in vivo experiments and medical uses rest on its synergistic antibacterial activity and ability to disrupt biofilms. These results emphasize the promise of nanotechnology in creating novel therapies to fight ongoing bacterial infections.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104068"},"PeriodicalIF":6.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of carbon nitride nanotube confined nano Fe0 for boosting activation of peroxymonosulfate towards tetracycline removal
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-09 DOI: 10.1016/j.eti.2025.104079
Yajun Ji , Feiya Xu , Kun Fang , Huiyun Liu , Xiaofang Pan , Zihe Jin , Lingyun Zheng , Lele Wang
{"title":"Facile synthesis of carbon nitride nanotube confined nano Fe0 for boosting activation of peroxymonosulfate towards tetracycline removal","authors":"Yajun Ji ,&nbsp;Feiya Xu ,&nbsp;Kun Fang ,&nbsp;Huiyun Liu ,&nbsp;Xiaofang Pan ,&nbsp;Zihe Jin ,&nbsp;Lingyun Zheng ,&nbsp;Lele Wang","doi":"10.1016/j.eti.2025.104079","DOIUrl":"10.1016/j.eti.2025.104079","url":null,"abstract":"<div><div>The nano-sized zero-valent iron (Fe<sup>0</sup>) exhibits excellent activity for organic contaminant remediation by activating peroxymonosulfate (PMS). Its catalytic performance, however, was restricted due to its susceptibility towards oxidation and agglomeration. Thus, carbon nitride nanotube embedded nano Fe<sup>0</sup> catalysts (Fe<sup>0</sup>@NC) with various Fe contents were synthesized to simultaneously overcome the drawbacks. Fe<sup>0</sup>@NC-10 showed high specific surface area (S<sub>BET,</sub> 118.87 m<sup>2</sup>·g<sup>−1</sup>), stable crystal structure, plentiful Fe- and N-containing active sites. Under the optimal conditions (0.05 g·L<sup>−1</sup> Fe<sup>0</sup>@NC-10 and 0.15 g·L<sup>−1</sup> PMS), over 86 % tetracycline (TC) could be removed after 5 min, possessing a rate constant (<em>K</em><sub>obs</sub>) value as high as 1.81 min<sup>−1</sup>. The constructed Fe<sup>0</sup>@NC-10/PMS system also showed prominent performance even at different solution pH values or with coexisting ions. Moreover, Fe<sup>0</sup>@NC-10 exhibited outstanding performance in the continuous degradation experiment. It was Fe<sup>0</sup>, Fe–N<sub>x</sub> and graphitic nitrogen in Fe<sup>0</sup>@NC-10 that activated PMS to produce ferryl Fe-oxo species (Fe<sup>IV</sup>=O) and <sup>1</sup>O<sub>2</sub>, which collectively resulted in the removal of TC. Sixteen intermediate products were detected during TC degradation, which showed lower toxicity. This study provides a simple strategy for synthesizing an active and stable Fe<sup>0</sup> nano-catalyst for TC removal by activating PMS.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104079"},"PeriodicalIF":6.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The synergistic effect of extracellular polysaccharide-producing salt-tolerant bacteria and biochar promotes grape growth under saline-alkaline stress
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-07 DOI: 10.1016/j.eti.2025.104070
Yeqi Li , Jiqiang Zhang , Xindong Wang , Zhangzhang Feng , Enshuai Yang , Mengzhen Wu , Yuqing Jiang , Jianquan Huang , Zhen Gao , Yuanpeng Du
{"title":"The synergistic effect of extracellular polysaccharide-producing salt-tolerant bacteria and biochar promotes grape growth under saline-alkaline stress","authors":"Yeqi Li ,&nbsp;Jiqiang Zhang ,&nbsp;Xindong Wang ,&nbsp;Zhangzhang Feng ,&nbsp;Enshuai Yang ,&nbsp;Mengzhen Wu ,&nbsp;Yuqing Jiang ,&nbsp;Jianquan Huang ,&nbsp;Zhen Gao ,&nbsp;Yuanpeng Du","doi":"10.1016/j.eti.2025.104070","DOIUrl":"10.1016/j.eti.2025.104070","url":null,"abstract":"<div><div>Grapes (<em>Vitis vinifera</em>) are a vital economic crop worldwide but are severely threatened by soil salinization and alkalization. While extracellular polysaccharides are known to improve soil conditions, it remains unclear how rhizosphere microorganisms that can produce extracellular polysaccharides enhance the tolerance of plants to salt-alkali conditions. This study selected <em>Bacillus subtilis</em> B4 and <em>Pseudomonas resinovorans</em> B9 based on their high levels of production of extracellular polysaccharides and subjected them to pot and field experiments. Our results demonstrated that both strains significantly promoted the growth of grape shoots, reduced the salinity of soil, and increased the levels of phosphorus and potassium in both the plants and soil. Compared to traditional <em>B. subtilis</em>, B9 performed better, and this was further enhanced when the strain was co-applied with biochar. 16S rRNA high-throughput sequencing was used to show that the combination of bacteria and biochar reshaped the native rhizosphere microbial community, altered its functional abundances, and improved the properties of soil, thus, ultimately promoting plant growth and enhancing salt-alkali tolerance. This study expands the microbial species available to improve the tolerance of grape to salt and ameliorate the saline-alkaline soils, thus, providing a theoretical basis for the combined application of microbial inoculants and biochar.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104070"},"PeriodicalIF":6.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acclimation strategy and nitrate supplementation significantly enhanced the ammonium tolerance of Arthrospira platensis HN5
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-07 DOI: 10.1016/j.eti.2025.104076
Qing Yu , Yali Wang , Kaixuan Wang , Wenjie Tian , Xiaobin Wen , Yi Ding , Yeguang Li , Zhongjie Wang
{"title":"Acclimation strategy and nitrate supplementation significantly enhanced the ammonium tolerance of Arthrospira platensis HN5","authors":"Qing Yu ,&nbsp;Yali Wang ,&nbsp;Kaixuan Wang ,&nbsp;Wenjie Tian ,&nbsp;Xiaobin Wen ,&nbsp;Yi Ding ,&nbsp;Yeguang Li ,&nbsp;Zhongjie Wang","doi":"10.1016/j.eti.2025.104076","DOIUrl":"10.1016/j.eti.2025.104076","url":null,"abstract":"<div><div>The highly toxic effects of ammonium on <em>Arthrospira</em> hinder its utilization as a nitrogen source in <em>Arthrospira</em> cultivation and severely limit its application in treating high-ammonium wastewater. This study revealed that both short-term (12 d) and long-term (270 d) ammonium acclimation significantly improved the ammonium tolerance of <em>Arthrospira platensis</em> HN5, with biomass productivities of 0.14 and 0.11 g L<sup>–1</sup> d<sup>–1</sup>, respectively, and net photosynthetic oxygen evolution rates exceeding 60 and 50 μmol O<sub>2</sub>·mg<sup>–1</sup>·Chla·h<sup>–1</sup> under a lethal ammonium concentration of 15 mM. Furthermore, the ammonium tolerance of the long-term acclimated strain exhibited heritable characteristics. Additionally, nitrate (NaNO<sub>3</sub>) concentrations of ≥ 0.1 mM were demonstrated to effectively enhance the ammonium tolerance of <em>A. platensis</em> HN5 in a concentration-independent manner. This study highlighted the role of acclimation and nitrate supplementation in improving the ammonium tolerance of <em>A. platensis</em> HN5, offering efficient and reliable strategies for ammonium utilization in the <em>Arthrospira</em> industry and for treating high-ammonium wastewater using <em>Arthrospira</em>.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104076"},"PeriodicalIF":6.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unseen threats: Microplastic presence in waterpipe tobacco
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-07 DOI: 10.1016/j.eti.2025.104069
Farshid Soleimani , Rasta Habibi , Hossein Arfaeinia , Mohammad Reza Masjedi , Masoumeh Tahmasbizadeh , Sara Dadipoor , Mohammad Ebrahimi kalan , Amir Zahedi
{"title":"Unseen threats: Microplastic presence in waterpipe tobacco","authors":"Farshid Soleimani ,&nbsp;Rasta Habibi ,&nbsp;Hossein Arfaeinia ,&nbsp;Mohammad Reza Masjedi ,&nbsp;Masoumeh Tahmasbizadeh ,&nbsp;Sara Dadipoor ,&nbsp;Mohammad Ebrahimi kalan ,&nbsp;Amir Zahedi","doi":"10.1016/j.eti.2025.104069","DOIUrl":"10.1016/j.eti.2025.104069","url":null,"abstract":"<div><div>Microplastics (MPs) are a ubiquitous form of waste and an emerging public health concern. MPs have been detected in various environmental matrixes, vegetables, and foods, but no data currently exists for tobacco samples. This research aimed to evaluate the concentration and characteristics of MPs in fresh tobaccos (fruit-flavored and regular) and their post-consumption waterpipe tobacco wastes (PWTWs). Our findings showed that the mean ± SD concentration of MPs particles in fresh flavored tobacco was 4.64 ± 1.59 items/g, whereas it was 0.79 ± 0.12 items/g in regular samples (p &lt; 0.05). In the case of PWTW of flavored tobacco, the MPs concentration was 0.82 ± 0.07 items/g, while no particle was found in the PWTW of regular samples (p &lt; 0.05). The most dominant size of MPs in fruit-flavored tobacco was 10–50 μm, while particles &lt; 50μm (250–500μm) were the most frequent particles in fresh regular tobacco. Fibers were the most common shape among MP particles detected in both tobacco samples, with white/transparent and black being the predominant colors across all samples. The SEM-EDS (scanning electron microscope and energy-dispersive X-ray spectroscopy) analysis revealed that carbon and oxygen (C and O) were the primary elements detected in MPs present in waterpipe tobacco, confirming that these particles are plastic in nature. To better understand the implications of these findings, further research is needed to assess additional MP characteristics, such as polymer type. Moreover, investigating the potential toxicity of these MPs is crucial for understanding their effects on smokers' health.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104069"},"PeriodicalIF":6.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between soil organic carbon fractions and microbial nutrient limitations among different woodlands in the western karst region of Hubei
IF 6.7 2区 环境科学与生态学
Environmental Technology & Innovation Pub Date : 2025-02-06 DOI: 10.1016/j.eti.2025.104074
Ting Luo , Zhiteng He , Dong Xia , Yakun Xu , Lu Xia , Ting Guo , Wennian Xu , Jing Fang
{"title":"Relationship between soil organic carbon fractions and microbial nutrient limitations among different woodlands in the western karst region of Hubei","authors":"Ting Luo ,&nbsp;Zhiteng He ,&nbsp;Dong Xia ,&nbsp;Yakun Xu ,&nbsp;Lu Xia ,&nbsp;Ting Guo ,&nbsp;Wennian Xu ,&nbsp;Jing Fang","doi":"10.1016/j.eti.2025.104074","DOIUrl":"10.1016/j.eti.2025.104074","url":null,"abstract":"<div><div>In karst regions, soil organic carbon (SOC) stability and microbial activity are vital for ecosystem function, yet their response to nutrient availability remains unclear. This study investigated SOC fractions and microbial nutrient limitations in natural mixed woodland (NW), cypress woodland (CW), and stone dike artificial woodland (SW) in the Xialaoxi watershed, Hubei. Seasonal variations in labile organic carbon (LOC), microbial biomass carbon (MBC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and enzyme activities were analyzed. The results showed that SOC levels were mainly controlled by soil microbial activity during spring and summer, whereas plant-derived organic carbon sources were the main contributors during fall and winter. NW and CW exhibited higher active organic carbon and microbial activity than SW, where SOC was predominantly mineral-bound. Deciduous broadleaved woodlands (NW) demonstrated higher carbon and nitrogen enzyme activities and larger vector angles (VA), facilitating soil carbon sequestration. Soil microbial growth was phosphorus-limited across woodlands, with microbial nutrient limitation positively correlated with SOC fractions and amino sugar content, enhancing organic carbon sequestration. Large- and medium-aggregate LAP activity and microaggregate NAG activity were key factors influencing soil aggregate SOC. PLS pathway analysis revealed woodland type affected the total nutrients, thereby altering the contents of SOC fractions, promoting the transformation activities of enzymes and ultimately impacting microbial nutrient limitation. These findings provide insights into carbon sequestration mechanisms and offer guidance for soil nutrient management and ecosystem sustainability in karst woodlands.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104074"},"PeriodicalIF":6.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信