Thi Lan Anh Nguyen , Hien Thi Thu Tran , Thi Minh Thu Quach , Yen Hai Dao , Hung Cong Duong , Oanh Thi Doan , Thuy Thi Duong , Lan Thi Thu Tran
{"title":"Biopolymer polyhydroxyalkanoate production from Arthrospira platensis NLHT3 cyanobacterium isolated in Vietnam","authors":"Thi Lan Anh Nguyen , Hien Thi Thu Tran , Thi Minh Thu Quach , Yen Hai Dao , Hung Cong Duong , Oanh Thi Doan , Thuy Thi Duong , Lan Thi Thu Tran","doi":"10.1016/j.eti.2024.103841","DOIUrl":"10.1016/j.eti.2024.103841","url":null,"abstract":"<div><div>Cyanobacteria are photosynthesis microorganisms that can convert CO<sub>2</sub> into biomass using light as an energy source. Cyanobacteria can also produce polyhydroxyalkanoates (PHA) for intracellular energy and carbon storage, especially under nutrient-deficient conditions. This study investigates the effects of nutrient media and culturing conditions on PHA accumulation in <em>Arthrospira platensis</em> NLHT3. PHA accumulation in <em>A. platensis</em> NLHT3 reached the optimum value of 28.2 % on the day 15 of cultivation with supplemented mixture of 0.1 M of NaHCO<sub>3</sub> and 94 mM of C<sub>3</sub>H<sub>5</sub>NaO<sub>2</sub> (sodium propionate) as carbon sources, 12 mM of NaNO<sub>3</sub> as nitrogen source, and 1.72 mM of K<sub>2</sub>HPO<sub>4</sub> as phosphorous source. An even higher PHA accumulation of 39 % was achieved when light intensity increased from 75 to 108 µmol photons m<sup>−2</sup> s<sup>−1</sup> at light/dark cycle of 16 h/8 h and the abovementioned carbon and nutrient concentrations. The accumulated PHA was identified as poly(3-hydroxybutyrate) (PHB) using Fourier-transform infrared spectroscopy and <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance. The results reported here reveal the great potential of <em>A. platensis</em> NLHT3 for large-scale production of biodegradable PHA plastics.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103841"},"PeriodicalIF":6.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reyad M. El-Sharkawy , Mohamed Khairy , Magdi E.A. Zaki
{"title":"Aspergillus versicolor mediated biofabrication of zinc phosphate nanosheets for exploring their antimycotic activity and development of alginate-based nanocomposite for enhanced dye degradation","authors":"Reyad M. El-Sharkawy , Mohamed Khairy , Magdi E.A. Zaki","doi":"10.1016/j.eti.2024.103840","DOIUrl":"10.1016/j.eti.2024.103840","url":null,"abstract":"<div><div>The production of novel, suitable, and cost-effective nanocomposites are highly required for its prospective application in the remediation of environmental pollutants and as antimycotic agents. Zinc phosphate nanosheets (ZP-ns) were fabricated by harnessing the exometabolites of <em>Aspergillus versicolor</em> and then incorporated within an alginate biopolymer (ZP-ns@Alg) to improve the biosorptive removal of the methyl orange (M<sub>th</sub>O) dye from its aqueous solution. For the very first time, the antimycotic activity of the green synthesized ZP-ns was unveiled. The mycelial growth inhibition was obtained in a dose-dependent manner with significant (<em>P</em> < 0.05) behavior compared to the control plates. The biosorption conditions using ZP-ns@Alg microbeads were optimized using the response surface methodology-based central composite design (RSM-CCD) to maximize the biosorption efficiency. The highest biosorptive efficiency was achieved at pH 4.0, biosorption dosage 0.07 g, contact time 50 min, dye concentration 100 mg/l, and shaking speed 100 rpm. The equilibrium data were more tailored to the pseudo-second order (PS) model with an R<sup>2</sup> of 0.9955 and a Langmuir isotherm (R<sup>2</sup> = 0.9945) with a maximum biosorptive capacity (q<sub>max</sub>) of 166.95 mg/g and an average R<sub>L</sub> value of 0.0003, indicating favorable biosorption. The removal capacity was reduced to ∼90 % after the 6th cycle, which is a robust signal that the developed biosorbent microbeads could be recycled and regenerated for a prolonged time. These results marked the application of ZP-ns as a novel antimycotic agent with excellent activities. Microbeads, made from low-cost biopolymers, can be applied to remediating environmental pollutants from wastewater.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103840"},"PeriodicalIF":6.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingna Xing , Xin Chen , Qi Li , Lei Ji , Xiaowen Fu , Jianing Wang
{"title":"Insights into the synergistic effects between deposited Fe oxides and dissolved organic matter in influencing perfluorooctanoic acid transport in saturated porous media","authors":"Yingna Xing , Xin Chen , Qi Li , Lei Ji , Xiaowen Fu , Jianing Wang","doi":"10.1016/j.eti.2024.103838","DOIUrl":"10.1016/j.eti.2024.103838","url":null,"abstract":"<div><div>Perfluorooctanoic acid <strong>(</strong>PFOA) transport in the subsurface environment is relevant to drinking water safety, while the compounding effects of soil components on PFOA migration are poorly understood. Laboratory miscible-displacement experiments were conducted using saturated sand columns to explore how metal oxide surfaces and dissolved organic matter (DOM) jointly affect PFOA transport in porous media. Retardation factors indicated that Fe oxide coating inhibited PFOA migration due to electrostatic interaction. However, PFOA recovery rates changed insignificantly, decreasing by less than 4 % when the proportion of Fe oxide-coated sand reached 50 %. DOM (1 mg/L humic acid) in the pore water slightly decreased PFOA recovery rates (by about 10 %) in quartz sand, indicating the effect of hydrophobic interaction on PFOA migration. When the PFOA solution containing 1 mg/L humic acid was injected into the column containing Fe oxide-coated sand, PFOA recovery was significantly decreased by nearly 20 %, and the retardation factor was more than doubled. This could be attributed to the stronger hydrophobic effect provided by the higher DOM deposition on the Fe oxide surface. These results, supported by SEM-EDS, zeta potential, and model fitting data, highlight the microscopic mechanisms by which interactions between metal oxides and DOM influence PFOA transport. However, this inhibitory effect disappeared at higher humic acid concentrations (20 mg/L), indicating the risk of PFOA re-migration when the DOM concentration greatly exceeds the adsorption capacity of the media for it. The findings of this work have implications for predicting or controlling the environmental risks of PFOA in soil and groundwater.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103838"},"PeriodicalIF":6.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingzhen Zhu , Wenbo Sun , Jiawen Xu, Xiaodong Long, Yingying Zhang, Hui Yang
{"title":"Simultaneous nutrition removal and high-efficiency biomass accumulation by microalgae using cattle wastewater","authors":"Mingzhen Zhu , Wenbo Sun , Jiawen Xu, Xiaodong Long, Yingying Zhang, Hui Yang","doi":"10.1016/j.eti.2024.103837","DOIUrl":"10.1016/j.eti.2024.103837","url":null,"abstract":"<div><div>The development of the livestock industry has led to the discharge of large quantities of nutrient-rich livestock wastewater, posing a significant challenge to wastewater treatment. Improper treatment may pose potential threats to the environment and human health. Microalgae are of great interest due to their rich nutritional value and as potential agents for bioremediation of pollution in aquatic environments. In this study, mixture of 60 % cattle wastewater (CW) and 40 % BG-11, supplemented with equal parts glucose and sodium bicarbonate, was found to be optimal for high production of <em>Chlorella sorokiniana</em>. Under these conditions, the highest biomass, protein, lipid concentration of <em>C. sorokiniana</em> were 8.98×10<sup>10</sup> cells/L, 11.82 g/L, 24.9 %, respectively, Whereas, the removal efficiencies of total nitrogen (TN), ammonia nitrogen, total phosphorus (TP), and chemical oxygen demand (COD) were 61.44 %, 98.99 %, 89.33 % and 65.81 %, respectively. These findings highlight the potential of <em>C. sorokiniana</em> in simultaneous CW treatment and nutritious microalgal biomass production.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103837"},"PeriodicalIF":6.7,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Azo dye bioremediation: An interdisciplinary path to sustainable fashion","authors":"Gajendra B. Singh , Ankita Vinayak , Gaurav Mudgal , Kavindra Kumar Kesari","doi":"10.1016/j.eti.2024.103832","DOIUrl":"10.1016/j.eti.2024.103832","url":null,"abstract":"<div><p>Textile effluents constitute a significant source of environmental contamination due to the substantial discharge of recalcitrant azo dyes. These synthetic xenobiotic compounds, extensively employed across various industries, represent a predominant class of colorants. The persistence of azo dyes in aquatic ecosystems poses a formidable threat to biota, encompassing flora, fauna, and anthropogenic populations. These recalcitrant pollutants can infiltrate agricultural systems through irrigation practices, facilitating their entry into trophic networks and eliciting deleterious effects on human health. Conventional physico-chemical treatment methodologies have been implemented for the remediation of dye-laden wastewater; however, the inherent stability and color-fastness of azo dyes render the decolorization process arduous. Stringent environmental regulations have been promulgated to mitigate the discharge of these hazardous compounds into aquatic systems. Bioremediation emerges as a promising solution for the effective treatment of toxic synthetic dyes. This review elucidates biological decolorization technologies for azo dyes exhibiting carcinogenic, mutagenic, and phytotoxic properties. It explores microbial biodecolorization mechanisms, emphasizing the roles of bacteria, fungi, and algae, and their enzymes in the adsorption and degradation of dye molecules, facilitating their complete mineralization into innocuous entities. Strategies to enhance biodecolorization efficiencies, such as sequential aerobic-anaerobic decolorization and immobilization techniques, are also discussed. Immobilization of biological decolorizers enables their long-term efficient utilization. Various technologically advanced interdisciplinary approaches to mitigate azo dye problems have also been covered. This comprehensive review aims to guide researchers and environmentalists in devising effective treatment modalities for toxic dye remediation and environmental conservation.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103832"},"PeriodicalIF":6.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003080/pdfft?md5=9bc9d099d4ba4c174e45d677f6f99b66&pid=1-s2.0-S2352186424003080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elies Zarrouk , Souleiman El Balkhi , Franck Saint-Marcoux
{"title":"Critical evaluation of high-resolution and low-resolution mass spectrometry for biomonitoring of human environmental exposure to pesticides","authors":"Elies Zarrouk , Souleiman El Balkhi , Franck Saint-Marcoux","doi":"10.1016/j.eti.2024.103834","DOIUrl":"10.1016/j.eti.2024.103834","url":null,"abstract":"<div><p>Despite increasing debates about their potential side effects on human health, data concerning the risks and the impacts associated with pesticides remains scarce. Analytical tools allowing the measurement of most pesticides and/or their metabolites to which the population can be exposed are also of need. In the present study, the limits of detection (LODs) of 3 different screening procedures based on either Low-Resolution and High-Resolution Mass Spectrometry (LR-MS and HR-MS) for the determination of pesticides in serum (among which carbamates, dithiocarbamates, neonicotinoids, organochlorines, organophosphates and pyrethroids) were explored. For HR-MS, a quadrupole time-of-flight was used in positive and negative electrospray ionization modes and data were obtained from either a targeted scheduled MSMS acquisition (HR-MSMS) or a data-independent acquisition (HR-DIA). For LR-MS, a triple quadrupole was used and data were acquired with a classical multiple-reaction monitoring (MRM) mode. Depending on the approach, the LOD values varied from 0.05 to 10 ng/mL. For the lowest concentrations, the proportion of molecules detected was systematically greater for the LR-MS approach, while those of HR-MSMS were better than those of HR-DIA. These differences in the LOD values were confirmed in a sample of 174 serums in which LR-MRM detected 89 compounds while HR-MSMS and HR-DIA detected 79 and 75 compounds, respectively. Nevertheless, for environmental and occupational purposes, HRMS approach could probably be efficient to detect most of pesticides and their metabolites in human serum and could be suitable for human biomonitoring studies or fundamental research exploring the impact of exposure to pesticides on human health.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103834"},"PeriodicalIF":6.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003109/pdfft?md5=6566fdce7dce2b3193d297963a00703c&pid=1-s2.0-S2352186424003109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Tu , Congjun Rao , Xinping Xiao , Fuyan Hu , Mark Goh
{"title":"Interactive geographical and temporal weighted regression to explore spatio-temporal characteristics and drivers of carbon emissions","authors":"Wei Tu , Congjun Rao , Xinping Xiao , Fuyan Hu , Mark Goh","doi":"10.1016/j.eti.2024.103836","DOIUrl":"10.1016/j.eti.2024.103836","url":null,"abstract":"<div><div>Countries need a science-informed strategy to manage carbon peaking and carbon neutrality. This study extends the geographically and temporally weighted regression (GTWR) model to include the GeoDetector's factor interaction detection plate to investigate the spatio-temporal characteristics of the factors influencing regional carbon emissions in the Yangtze River Economic Belt (YEB), an important economic area in China. The results from the proposed interactive geographically and temporally weighted regression (IGTWR) model indicate that the evolution of carbon emissions can be categorized into two phases in the temporal dimension. In terms of spatial distribution, the carbon emissions of the YEB are distributed in a northeast<img>southwest direction, are centered in Hubei Province and cover a broad geographical range. Both the drivers of carbon emissions and their factor interactions possess spatial heterogeneity.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103836"},"PeriodicalIF":6.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003122/pdfft?md5=cb29e463152debc39e98e7b61825d269&pid=1-s2.0-S2352186424003122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dingxiang Zhuang, RenJie Wang, Song Chen, Xinfa Li
{"title":"The geochemical and thermodynamic characteristics of waste sand reinforced by microbially induced calcium carbonate precipitation","authors":"Dingxiang Zhuang, RenJie Wang, Song Chen, Xinfa Li","doi":"10.1016/j.eti.2024.103828","DOIUrl":"10.1016/j.eti.2024.103828","url":null,"abstract":"<div><div>To achieve efficient utilization of waste sand and make it a recyclable resource, the waste sand was reinforced by microbially induced calcium carbonate precipitation (MICP). Scanning Electron Microscopy (SEM)–Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the mineral morphologies and elemental compositions. The results of SEM showed that rhombohedral and dumbbell-shaped minerals filled the pores of the sand column, and the elemental compositions were C, O, Ca, Al, and P. Various organic functional groups were discovered by FTIR. Mineral compositions were analyzed by X-ray diffraction (XRD). The results showed that the mineral components were calcite and aragonite, and the crystallinity of calcite improved with the increase in the bacterial concentrations. Stable carbon isotope analyses showed that the sand columns at different bacterial concentrations ranged from − 18.9 ‰ to − 21.4 ‰, which were more negative than chemical calcite with − 10.9 ‰. The mechanical properties of compression strength and splitting tensile strength proved that MICP could enhance the strength of sand columns. Thermodynamic characteristics were carefully investigated using thermogravimetric analysis from 50 °C to 1000 °C, which showed that the activation energy and thermal stability of the sand columns reinforced by MICP increased. Therefore, this study provides important insights into the process of MICP, which has good spontaneity, ecological performance, and low energy consumption. It is conducive to the construction of ecological civilization and the requirements of green development, and it has important engineering significance.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103828"},"PeriodicalIF":6.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient partial denitrification-anammox process enabled by a novel denitrifier with truncated nitrite reduction pathway","authors":"Xiaoxu Zheng , Jialiang Zuo , Shengjun Xu , Jinglin Wang , Faqian Sun , Yawen Xie , Shuanglong Ma , Yunxiang Zhang , Xupo Zhang , Aibin Zhan , Cancan Jiang , Xuliang Zhuang","doi":"10.1016/j.eti.2024.103830","DOIUrl":"10.1016/j.eti.2024.103830","url":null,"abstract":"<div><div>Partial denitrification coupled with anaerobic ammonium oxidation (PD-anammox) is a promising technology for cost-effective nitrogen removal from wastewater. Nitrite availability is crucial to anammox performance but often limited by the slow partial denitrification process. Here we report an efficient PD-anammox system driven by the novel denitrifier <em>Bacillus velezensis</em> C1–3 with truncated nitrite reduction pathway. Whole-genome sequencing analysis revealed that the lack of nitrite reductase genes nirS/nirK and norBC in strain C1–3 enabled nitrite accumulation without the need for precise control of carbon dosage. By coupling it with anammox sludge, over 79 % total nitrogen (TN) removal was stably achieved, under a TN loading rate of 660 mg/L/d and a carbon/nitrogen ratio below 1.0. Mechanism explorations indicate that the niche differentiation of C1–3 and anammox bacteria facilitated their mutualism while avoiding nitrite competition. This study demonstrates a novel strategy for establishing efficient PD-anammox process by harnessing the unique metabolic deficiency of denitrifiers, shedding light on the development of stable and sustainable biological nitrogen removal technologies with minimal carbon footprint.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103830"},"PeriodicalIF":6.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaoxiang Zhang, Wencong Wu, Feiyu Huang, Ming Yuan, Fang Liu, Hao Zhou, Liansheng He
{"title":"Efficient selective adsorption of Cu2+ and Cd2+ by poly(hydroxyethyl methacrylate) polymer modified by polyfunctional groups","authors":"Gaoxiang Zhang, Wencong Wu, Feiyu Huang, Ming Yuan, Fang Liu, Hao Zhou, Liansheng He","doi":"10.1016/j.eti.2024.103829","DOIUrl":"10.1016/j.eti.2024.103829","url":null,"abstract":"<div><p>A novel polyfunctional group-modified poly(hydroxyethyl methacrylate) polymer, termed PFG-PHEMA, was synthesized for adsorption of Cu<sup>2+</sup> and Cd<sup>2+</sup>. Material characterization confirmed that the surface functional groups facilitated efficient adsorption of these ions. pH optimization experiments demonstrated that the adsorption capacities of Cu<sup>2+</sup> and Cd<sup>2+</sup>, reaching 162.2 and 150.3<!--> <!-->mg·L<sup>−1</sup> respectively, were maximized at a pH of 5, with an initial heavy metal concentration of 200<!--> <!-->mg·L<sup>−1</sup>. Kinetic and isotherm studies indicated that the adsorption process conformed to a monolayer, homogeneous, and chemisorption model, achieving equilibrium within 60<!--> <!-->min. The maximum adsorption capacities were determined to be 500<!--> <!-->mg·g<sup>−1</sup> for Cu<sup>2+</sup> and 384.6<!--> <!-->mg·g<sup>−1</sup> for Cd<sup>2+</sup>. Competitive adsorption experiments showed that PFG-PHEMA exhibited superior selectivity for Cu<sup>2+</sup> over other metal ions. This selectivity was corroborated by X-ray photoelectron spectroscopy (XPS) analysis, which identified the sulfhydryl group as the crucial functional moiety responsible for Cu<sup>2+</sup> selectivity. Furthermore, the presence of low concentrations of fulvic acid (FA) enhanced adsorption via ternary complex formation, whereas higher concentrations impeded adsorption by forming FA-metal complexes that competed with the polymer. Overall, the strategic incorporation of multiple functional groups into PFG-PHEMA conferred a high adsorption capacity for Cu<sup>2+</sup> and Cd<sup>2+</sup>. The analysis further indicated that sulfhydryl groups exhibit high selectivity toward Cu<sup>2+</sup>, whereas amine and oxygen-containing groups preferentially bind to Cd<sup>2+</sup>, reinforcing the potential of PFG-PHEMA as a highly effective adsorbent for heavy metals.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103829"},"PeriodicalIF":6.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424003055/pdfft?md5=c9d6c10a98db9d0ab9811b498de9f5af&pid=1-s2.0-S2352186424003055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}