Environmental Nanotechnology, Monitoring and Management最新文献

筛选
英文 中文
Algae as a source of bionanofactory for the synthesis of ecofriendly nanoparticles 藻类作为合成生态友好型纳米颗粒的仿生工厂来源
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-28 DOI: 10.1016/j.enmm.2024.101012
K. Riazunnisa , C. Madhuri , A. Swarna Latha , N. Rajesh , Habeeb Khadri , T. Chandrasekhar , V. Anu Prasanna , M. Subhosh Chandra
{"title":"Algae as a source of bionanofactory for the synthesis of ecofriendly nanoparticles","authors":"K. Riazunnisa ,&nbsp;C. Madhuri ,&nbsp;A. Swarna Latha ,&nbsp;N. Rajesh ,&nbsp;Habeeb Khadri ,&nbsp;T. Chandrasekhar ,&nbsp;V. Anu Prasanna ,&nbsp;M. Subhosh Chandra","doi":"10.1016/j.enmm.2024.101012","DOIUrl":"10.1016/j.enmm.2024.101012","url":null,"abstract":"<div><div>Nanoparticle synthesis using biological systems has become increasingly popular because of its simplicity, cost effectiveness, and eco-friendliness. Nanoparticles have unique properties and are hence being increasingly explored for various applications, including medicine, cosmetics, agriculture, and bioremediation. In particular, the use of algae for the production of nanoparticles has recently drawn increased amounts of attention because of the possible advantages of this process over conventional methods. The current review aims to document, update, and uncover all the details pertaining to algal nanoparticle synthesis, characterization and applications. Algae have substantial economic value for large-scale manufacturing of various components. It has been used to synthesize a variety of nanoparticles, such as iron, zinc, copper, gold, and silver. Several algal metal and metal oxide nanoparticles have been shown to exhibit anticancer, antibacterial, antifungal, antibiofilm, antiplasmodial, antioxidant, and catalytic properties. Although there has been some success in obtaining nanoparticle production from algal species, there are still some unexplored facts that need to be uncovered to improve production. Therefore, this article reviews the recent advances in synthesizing and characterizing nanoparticles from algae and their potential applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101012"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics in ecological system: Their prevalence, health effects, and remediation 生态系统中的微塑料:它们的普遍性、对健康的影响和补救措施
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-19 DOI: 10.1016/j.enmm.2024.101007
Aris Ismanto , Tony Hadibarata , Risky Ayu Kristanti , Muhammad Zainuri , Denny Nugroho Sugianto , Wulan Kusumastuti , Malya Asoka Anindita
{"title":"Microplastics in ecological system: Their prevalence, health effects, and remediation","authors":"Aris Ismanto ,&nbsp;Tony Hadibarata ,&nbsp;Risky Ayu Kristanti ,&nbsp;Muhammad Zainuri ,&nbsp;Denny Nugroho Sugianto ,&nbsp;Wulan Kusumastuti ,&nbsp;Malya Asoka Anindita","doi":"10.1016/j.enmm.2024.101007","DOIUrl":"10.1016/j.enmm.2024.101007","url":null,"abstract":"<div><div>Water is a fundamental component of human physiological processes, playing a crucial role in functions such as nutrient assimilation and metabolic activities. Furthermore, it plays a crucial role in guaranteeing a plentiful food supply for all organisms. In addition to its duty in providing nutrition, water serves as a home for many life forms and plays a vital part in establishing a conducive living environment. However, the introduction of plastic materials has led to the occurrence of microplastics (MPs) in aquatic environments, which has become a global issue that has attracted significant interest from both the scientific community and the general public. The increasing worldwide demand for plastics can be ascribed to its multifunctionality in commercial and industrial contexts, combined with its cost-effectiveness. Members of Parliament have been identified through multiple sources, including but not limited to cosmetic products, industrial wastes, and fishing operations. The primary aim of this research is to conduct a thorough examination of the consequences resulting from the widespread presence of MPs on both terrestrial and marine ecosystems, as well as the impact on human welfare. Therefore, it is crucial to develop efficient mitigation measures in order to remove MPs from water reservoirs, protect ecological integrity, and provide a safer environment for future generations. Furthermore, this work evaluates the benefits and limitations of utilized methodologies, elucidating the inherent difficulties in MPs research that require resolution in order to achieve a thorough comprehension of these particles. International collaboration plays a crucial role in efficiently resolving concerns related to marine pollutants, as they have the ability to disperse by wind and sea currents, leading to possible repercussions that are difficult to predict.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101007"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treatment of gaseous toluene in an anoxic hybrid bioreactor: Optimization using response surface methodology 在缺氧混合生物反应器中处理气态甲苯:利用响应面方法进行优化
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-19 DOI: 10.1016/j.enmm.2024.101006
Pallavi Chaudhary , Susant Kumar Padhi , Lopa Pattanaik
{"title":"Treatment of gaseous toluene in an anoxic hybrid bioreactor: Optimization using response surface methodology","authors":"Pallavi Chaudhary ,&nbsp;Susant Kumar Padhi ,&nbsp;Lopa Pattanaik","doi":"10.1016/j.enmm.2024.101006","DOIUrl":"10.1016/j.enmm.2024.101006","url":null,"abstract":"<div><div>This study focuses on treating gaseous toluene emissions from chemical and petrochemical industries using an anoxic hybrid bioreactor (AnHBR) and optimizing the process using response surface methodology (RSM). By varying the gas flow rate (0.05–0.25 LPM) of toluene, the gas residence time (GRT) within the AnHBR ranged from 0.53 to 2.67 h, resulting in an inlet loading rate (ILR) between 0.36 to 14.33 g/m<sup>3</sup> h. Simultaneously, the hydraulic retention time (HRT) of the liquid feed was varied from 24 to 72 h in the AnHBR. The operating parameters were varied to determine the optimal combination to achieve the maximum toluene removal, which remained above 96% throughout the operation. At the optimized combinations (flow rate: 0.15 LPM, GRT: 0.89 h, and HRT: 48 h) in AnHBR, toluene removal reached ∼99%, with end products generated consisting of 1.8% CO<sub>2</sub> and 92.9% N<sub>2</sub> gas. Metagenomics analysis revealed a dominance of toluene degraders (∼38%), highlighting their potential to degrade toluene in the AnHBR. The RSM enhanced toluene treatment in the AnHBR, demonstrating robustness in handling high pollutant loads and its potential for industrial applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101006"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green biosynthesis of Ag-doped hetero-metallic oxide nanocomposite for efficient sunlight-driven photo-adsorptive degradation of carcinogenic naphthalene and phenanthrene 绿色生物合成掺银杂质金属氧化物纳米复合材料,用于在阳光驱动下高效光吸附降解致癌物质萘和菲
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-19 DOI: 10.1016/j.enmm.2024.101008
Sudha Choudhary , Manviri Rani , Uma Shanker
{"title":"Green biosynthesis of Ag-doped hetero-metallic oxide nanocomposite for efficient sunlight-driven photo-adsorptive degradation of carcinogenic naphthalene and phenanthrene","authors":"Sudha Choudhary ,&nbsp;Manviri Rani ,&nbsp;Uma Shanker","doi":"10.1016/j.enmm.2024.101008","DOIUrl":"10.1016/j.enmm.2024.101008","url":null,"abstract":"<div><div>One of the most significant issues facing the world today is environmental contamination due to the polycyclic aromatic hydrocarbons, or PAHs release of reactive chemicals into the environment. Here, a green technology was used to synthesis the Ag doped Bi<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> nanocomposite utilizing an extract from Azadirachta indica leaves. The morphological and structural examination of Ag doped Co<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>O<sub>3</sub> revealed an image in the form of a hollow spherical or flake adsorbed on a Ag surface with an increase surface area. New peaks in the FT-IR spectra of Ag–O and Co–O–Bi at 678 cm<sup>−1</sup> and 1130 cm<sup>−1</sup>, respectively, show the coupling of Ag. Following this, under various reaction conditions (pollutant: 10–30 mg/L; catalyst: 10–30 mg; pH: 3–11, dark sunlight) the doped nanocomposite was assessed for the efficient removal of NAP and PHE. Ag doped Co<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>O<sub>3</sub> displayed maximum degradation of NAP (96 %) and PHE (94 %) at 10 mg/L conc. of each PAH with a 25 mg catalytic dose at neutral pH in the presence of direct sunlight. First-order kinetics followed by initial Langmuir adsorption constituted the degradation process. Predominant reactive species and safer metabolite formation in the photocatalysis process of PAHs were studied by scavenger and GC–MS analysis. The green nano photocatalyst that was created demonstrated excellent stability, sensitivity, and reusability (up to 8th cycles) during the degrading process, which likely qualified it for use in industrial uses.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101008"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of low-cost metal-loaded adsorbent using post-consumer waste plastics: Experimental and modelling studies 利用消费后废塑料制备低成本金属吸附剂:实验和模型研究
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-18 DOI: 10.1016/j.enmm.2024.101009
Sreeja Sarkar, Naba Kumar Mondal
{"title":"Preparation of low-cost metal-loaded adsorbent using post-consumer waste plastics: Experimental and modelling studies","authors":"Sreeja Sarkar,&nbsp;Naba Kumar Mondal","doi":"10.1016/j.enmm.2024.101009","DOIUrl":"10.1016/j.enmm.2024.101009","url":null,"abstract":"<div><div>Fluoride contamination in drinking water is a world-wide problem which causes dangerous irreversible diseases called fluorosis. The present study highlighted the efficacy of metals (Al and Zn) impregnated thermally degraded products of polyethylene terephthalate (PET) towards the removal of fluoride from the solution. Synthesized metal impregnated carbonaceous materials was characterised by pHzpc, proximate analysis, SEM, EDX and FTIR studies. A batch adsorption study with operating variables such as initial concentration, pH, adsorbent dose, contact time, temperature and agitation speed were undertaken. Then an optimization study was performed through Response Surface Methodology (RSM). The results revealed that the adsorption isotherm and kinetics followed Langmuir Isotherm model (R<sup>2</sup> = 0.968) and pseudo-second order kinetics (R<sup>2</sup> = 0.995), respectively with adsorption capacity 6.793 mg/g. The thermodynamics of fluoride adsorption reveal that the adsorption was spontaneous and endothermic in nature. The RSM results demonstrated the optimization of operating parameters such as initial concentration (9.95 mg/L), adsorbent dose (0.01 g/50 mL), contact time (11.42 min) and temperature (331 K). The result from perturbation plot indicate that the most influential parameters are initial concentration followed by temperature and adsorbent dose and the least influential parameter is contact time. Finally, it can be concluded that waste PET plastics could be a valuable adsorbent for decontamination of pollutants from aqueous medium.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101009"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absorption of commercial and nanoparticulate ZnO and MgO synthesized by combustion reaction applied to maize soil 应用于玉米土壤的商品和通过燃烧反应合成的纳米微粒氧化锌和氧化镁的吸收率
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-13 DOI: 10.1016/j.enmm.2024.101005
T.E.P. Alves , A.G.A. Diniz , G.M.V.V. Safadi , C.M. Silva-Neto
{"title":"Absorption of commercial and nanoparticulate ZnO and MgO synthesized by combustion reaction applied to maize soil","authors":"T.E.P. Alves ,&nbsp;A.G.A. Diniz ,&nbsp;G.M.V.V. Safadi ,&nbsp;C.M. Silva-Neto","doi":"10.1016/j.enmm.2024.101005","DOIUrl":"10.1016/j.enmm.2024.101005","url":null,"abstract":"<div><p>Nanotechnology has rapidly expanded across various fields, yet its application in agriculture remains underexplored. This study investigates the impact of zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles on maize cultivation, comparing commercial samples with those synthesized by combustion reaction. Synthesized ZnO and ZnO/MgO (1:1 by mass) were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) to determine particle size and morphology. The experimental design assessed the effects of different treatments on magnesium and zinc uptake in maize roots and leaves, using atomic absorption spectrometry (AAS) for analysis. Results indicate that commercial ZnO significantly increased Zn absorption compared to synthesized samples and the control group, highlighting the influence of particle size and surface area on nutrient uptake. This study provides valuable insights into the potential of nanomaterials into the plant’s absorption mechanism as well as show that the availability of Zn NP synthesized contributes to the absorption of zinc by the plant without competing with Mg. On the other hand, when in Zn commercial, Mg absorption may be impaired.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101005"},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review of occurrence, sources, fate, ecological risk, and health effect of emerging contaminants in water and wastewater 对水和废水中新出现的污染物的发生、来源、归宿、生态风险和健康影响的严格审查
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-11 DOI: 10.1016/j.enmm.2024.100994
Gurudatta Singh, Anubhuti Singh, Virendra Kumar Mishra
{"title":"A critical review of occurrence, sources, fate, ecological risk, and health effect of emerging contaminants in water and wastewater","authors":"Gurudatta Singh,&nbsp;Anubhuti Singh,&nbsp;Virendra Kumar Mishra","doi":"10.1016/j.enmm.2024.100994","DOIUrl":"10.1016/j.enmm.2024.100994","url":null,"abstract":"<div><p>Emerging contaminants (ECs) are a diverse group of chemicals that have recently been identified as potential threats to human health and the environment. ECs are typically found at low concentrations (ng/L to ug/L) in water and wastewater, but they can bioaccumulate and biomagnified in the food chain, posing a risk to aquatic life and humans. Sources of these contaminants are diverse, with pharmaceuticals and personal care products entering the environment through human excretion, while industrial chemicals and pesticides are introduced through manufacturing processes and agricultural runoff. Wastewater treatment plants (WWTPs) are often unable to remove ECs effectively so that they can increase in surface water, groundwater, and drinking water. The fate of ECs in the environment is complex. It depends on various factors, including the chemical properties of the EC, the environmental conditions, and the presence of other chemicals. ECs can be transported long distances in water and persist in the environment for years or even decades.</p><p>Developing countries like India have limited information about most of the ECs. The ecological risks of ECs are not fully understood, but there is growing concern that they can have a negative impact on aquatic life and human health. Furthermore, the EC has undergone a detailed risk assessment examination, and the risk quotient (RQ) for different aquatic species with respect to corresponding contaminants is also calculated. Results imply that Paracetamol and Bisphenol-A have high RQ values for algae, fish and daphnia. Algae have shown substantially greater resilience to the action of ECs among the selected aquatic species.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100994"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation and mineralization of atrazine by ozonation: A toxicological prediction by QSAR toolbox 臭氧对阿特拉津的降解和矿化作用:利用 QSAR 工具箱进行毒理学预测
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-02 DOI: 10.1016/j.enmm.2024.101002
Vanessa Jurado-Davila , Gustavo Dall Agnol , Letícia Reggiane de Carvalho Costa , Júlia Toffoli de Oliveira , Liliana Amaral Féris
{"title":"Degradation and mineralization of atrazine by ozonation: A toxicological prediction by QSAR toolbox","authors":"Vanessa Jurado-Davila ,&nbsp;Gustavo Dall Agnol ,&nbsp;Letícia Reggiane de Carvalho Costa ,&nbsp;Júlia Toffoli de Oliveira ,&nbsp;Liliana Amaral Féris","doi":"10.1016/j.enmm.2024.101002","DOIUrl":"10.1016/j.enmm.2024.101002","url":null,"abstract":"<div><p>This work aims to investigate the atrazine (ATZ) mitigation by an advanced oxidative process. Atrazine is one an effective herbicide which has been detected in water sources, causing contamination problems. To address the persistent issue of contamination, ATZ degradation and mineralization were studied by ozonation. In addition, the eco-toxicity of the possible degradation byproducts was also evaluated by the Quantitative Structure-Activity Relationship (QSAR) OECD toolbox. To evaluate the influence and predict the optimum conditions of the ozonation process and the reaction time on the degradation of ATZ, as well as, the percentage of mineralization, an experimental design was performed based on factorial design 23 methodology with center-point analysis. Total organic carbon (TOC) analyses and High-Performance Liquid Chromatography (HPLC) were employed to evaluate the efficiency of ATZ mitigation. The optimal conditions were achieved at an ozone flow rate of 0.4 mL/min, oxidation time = 30 min, and pH=8 where 100 % of ATZ was degraded and the highest percentage of mineralization was obtained (25.61 %). The potential toxicity of the residual concentration of ATZ was obtained by comparing with the values predicted by the QSAR tool, by comparing the outcomes. It was possible to come to the conclusion that the approach had positive implications for environmental safety. The values obtained are below the values considered toxic in aquatic environments, in almost all experiments. Low-concentration byproduct formation suggests that the degradation routes lead to low-hazardous concentrations of compounds for the environment. This implies the ozone treatment strategy might offer a long-term remedy for the ATZ.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101002"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable analytical approach for selective fluorescence sensing of sulfosulfuron using copper nanoclusters from Tinospora cordifolia leaves extract 利用天竺葵叶提取物中的纳米铜簇对磺磺隆进行选择性荧光传感的可持续分析方法
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-09-01 DOI: 10.1016/j.enmm.2024.101003
Vibhuti Atulbhai Sadhu , Piyush Anil Kumar Sharma , Sanjay Jha , Tae Jung Park , Suresh Kumar Kailasa
{"title":"Sustainable analytical approach for selective fluorescence sensing of sulfosulfuron using copper nanoclusters from Tinospora cordifolia leaves extract","authors":"Vibhuti Atulbhai Sadhu ,&nbsp;Piyush Anil Kumar Sharma ,&nbsp;Sanjay Jha ,&nbsp;Tae Jung Park ,&nbsp;Suresh Kumar Kailasa","doi":"10.1016/j.enmm.2024.101003","DOIUrl":"10.1016/j.enmm.2024.101003","url":null,"abstract":"<div><p>In recent times, there has been a growing trend in utilizing medicinal plant extracts for the fabrication of fluorescent nanomaterials. In this work, <em>Tinospora cordifolia-</em>copper nanoclusters (<em>T. cordifolia</em>-CuNCs) were produced by employing <em>Tinospora cordifolia</em> (common name is “giloy”), a medicinal plant. A green chemistry approach was employed to generate blue fluorescent <em>T. cordifolia</em>-CuNCs, displaying λ<sub>Em</sub> at 430 nm when λ<sub>Ex</sub> at 330 nm, which shows a good quantum yield (QY) of 26.67 %. Sulfosulfuron pesticide was able to quench the fluorescence intensity of <em>T. cordifolia</em>-CuNCs via a “turn-off” mechanism. It was noticed that <em>T. cordifolia</em>-CuNCs could be used for the detection of sulfosulfuron pesticide in the range of 0.025–90 µM with a detection limit of 6.52 nM. Furthermore, a cellulose-based paper strip sensor was created for the<!--> <!-->visual detection of sulfosulfuron pesticide. Moreover, <em>T. cordifolia</em>-CuNCs-based fluorescence method was applied to quantify sulfosulfuron pesticide in apple, tomato, and rice samples, showing good recoveries, which demonstrates that this probe offers great potentiality for sensing of sulfosulfuron pesticide in food and environmental samples.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101003"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO nanostructures grown from spent batteries: Ambient catalytic aspects and novel mechanistic insights 从废电池中生长的氧化锌纳米结构:环境催化方面和新的机理见解
Environmental Nanotechnology, Monitoring and Management Pub Date : 2024-08-31 DOI: 10.1016/j.enmm.2024.101004
Hetvi Dave , Naznin Shaikh , Padmaja Pamidimukkala
{"title":"ZnO nanostructures grown from spent batteries: Ambient catalytic aspects and novel mechanistic insights","authors":"Hetvi Dave ,&nbsp;Naznin Shaikh ,&nbsp;Padmaja Pamidimukkala","doi":"10.1016/j.enmm.2024.101004","DOIUrl":"10.1016/j.enmm.2024.101004","url":null,"abstract":"<div><p>The present work includes a facile and economic microwave assisted hydrothermal synthesis of Zinc Oxide (ZnO), Diethylene Triamine Pentaacetic Acid (DTPA) stabilized Zinc Oxide (ZD) and DTPA stabilized Silver doped Zinc Oxide (ZAD) nanostructures using Zn from spent alkaline batteries. The synthesised nanostructures were well characterised using electronic, vibrational and X-Ray spectroscopic techniques as well as thermal and microscopic techniques revealing the successful stabilisation of DTPA in ZD and doping of Ag in ZAD. The Fourier Transform Infrared Spectroscopy (FTIR) spectra showed peaks characteristic to the presence of ZnO in the fingerprint region and those to the presence of DTPA. The X-Ray Diffraction Spectroscopy (XRD) pattern of ZnO, ZD and ZAD indicated the hexagonal wurtzite structure of ZnO and face centred cubic metallic Ag in ZAD. The Transmission Electron Microscopy (TEM) images revealed rod shaped morphology for ZnO and spherical morphologies for ZD and ZAD. The nanostructures proved to be efficient catalysts to achieve 100 % degradation of Malachite Green, Crystal Violet and Reactive Blue-21 and their binary mixtures under ambient conditions in presence of Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). ZAD exhibited relatively rapid degradation with rate constants 0.754 min<sup>−1</sup>, 0.187 min<sup>−1</sup> and 0.0150 min<sup>−1</sup> for MG, CV, and RB-21 respectively as well as 99 % reduction in Chemical Oxygen Demand (COD) value of the dye solutions. Scavenging studies and Electron Paramagnetic Resonance (EPR) studies using different spin trapping agents revealed the involvement of singlet oxygen species, hydroxyl radicals (OH<sup>.</sup>) and superoxide radicals (O<sub>2</sub><strong><sup>.-</sup></strong>) in the degradation process. This work aligns with Sustainable Development Goals 6, 12 and 13.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 101004"},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信