评估德里城市湿地季节性水化学变化和生物炭辅助重金属去除的影响:对管理策略的启示

Q1 Environmental Science
Gourav Sharma, Abhishek Kumar Chaubey, Kamal Kishor, Dinesh Mohan
{"title":"评估德里城市湿地季节性水化学变化和生物炭辅助重金属去除的影响:对管理策略的启示","authors":"Gourav Sharma,&nbsp;Abhishek Kumar Chaubey,&nbsp;Kamal Kishor,&nbsp;Dinesh Mohan","doi":"10.1016/j.enmm.2024.101025","DOIUrl":null,"url":null,"abstract":"<div><div>Wetlands globally, crucial to both society and the environment, are losing their ecological and hydrological functions due to growing human populations and activities. This decline is particularly severe in metropolitan wetlands, where land use changes and development pressures are more intense. This study focuses on evaluating the water quality parameters of Delhi’s five urban wetlands including Hauz Khas Lake (HZL), Sanjay Lake (SL), Bhalswa Lake (BL), Vasant Kunj Lake (VKL), and Sanjay Van Lake (SVL) during winter (14—17<sup>th</sup> January 2023) and summer (13—15<sup>th</sup> May 2023) seasons. A total of 200 samples (20 samples from each lake) from HZL, SL, BL, VKL, and SVL were collected and analysed for 24 physicochemical parameters in both the seasons. Multivariate analysis was performed using a correlation matrix and principal component analysis (PCA)–biplot. Hydrochemical analysis was performed using Piper trilinear and Gibbs diagrams. Water suitability for irrigation was accessed using the chlorinity index, sodium adsorption ratio (SAR), Wilcox diagram, and Kelly index/ratio. Suitability for industrial purposes was evaluated using the Langelier saturation index (LSI) and Ryznar stability index (RSI). Drinking water suitability was assessed through the water quality index (WQI). The average (n = 3) water quality parameter values were compared to BIS and WHO drinking water standards. The average pH for HZL, SL, BL, VKL and SVL was alkaline (ranging from 7.2 to 9.9) in both the seasons. In winter, 4 parameters exceeded BIS permissible limits in HZL, 9 in SL, 12 in BL, 7 in VKL, and 6 in SVL. A similar trend was observed in summer, indicating that SVL and HZL are less polluted than SL, BL, and VKL. The chlorinity index, SAR, Kelly ratio, and Wilcox diagram indicated BL water’s unsuitability for irrigation in both seasons. RSI values above 8 for HZL, SL, BL, VKL, and SVL suggest corrosive nature of the water samples collected in both seasons. The main factors affecting the WQI were heavy metals (primarily Cd<sup>2+</sup>, Cr<sub>T</sub>, Ni<sup>2+</sup>, Pb<sup>2+</sup>) and fluoride contamination. Finally, Himalayan pine needle biochar was prepared and used for <span><math><mrow><msup><mrow><mi>P</mi><mi>b</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> remediation from wetland water samples collected in both seasons. The findings of this study provide valuable insights into the water quality characteristics of the five wetlands during two seasons, aiding in water management and decision-making processes for sustainable utilization and conservation of water resources.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101025"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the influences of seasonal water hydrochemistry variations and biochar-assisted heavy metal removal in Delhi’s urban wetlands: Implications for management strategies\",\"authors\":\"Gourav Sharma,&nbsp;Abhishek Kumar Chaubey,&nbsp;Kamal Kishor,&nbsp;Dinesh Mohan\",\"doi\":\"10.1016/j.enmm.2024.101025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wetlands globally, crucial to both society and the environment, are losing their ecological and hydrological functions due to growing human populations and activities. This decline is particularly severe in metropolitan wetlands, where land use changes and development pressures are more intense. This study focuses on evaluating the water quality parameters of Delhi’s five urban wetlands including Hauz Khas Lake (HZL), Sanjay Lake (SL), Bhalswa Lake (BL), Vasant Kunj Lake (VKL), and Sanjay Van Lake (SVL) during winter (14—17<sup>th</sup> January 2023) and summer (13—15<sup>th</sup> May 2023) seasons. A total of 200 samples (20 samples from each lake) from HZL, SL, BL, VKL, and SVL were collected and analysed for 24 physicochemical parameters in both the seasons. Multivariate analysis was performed using a correlation matrix and principal component analysis (PCA)–biplot. Hydrochemical analysis was performed using Piper trilinear and Gibbs diagrams. Water suitability for irrigation was accessed using the chlorinity index, sodium adsorption ratio (SAR), Wilcox diagram, and Kelly index/ratio. Suitability for industrial purposes was evaluated using the Langelier saturation index (LSI) and Ryznar stability index (RSI). Drinking water suitability was assessed through the water quality index (WQI). The average (n = 3) water quality parameter values were compared to BIS and WHO drinking water standards. The average pH for HZL, SL, BL, VKL and SVL was alkaline (ranging from 7.2 to 9.9) in both the seasons. In winter, 4 parameters exceeded BIS permissible limits in HZL, 9 in SL, 12 in BL, 7 in VKL, and 6 in SVL. A similar trend was observed in summer, indicating that SVL and HZL are less polluted than SL, BL, and VKL. The chlorinity index, SAR, Kelly ratio, and Wilcox diagram indicated BL water’s unsuitability for irrigation in both seasons. RSI values above 8 for HZL, SL, BL, VKL, and SVL suggest corrosive nature of the water samples collected in both seasons. The main factors affecting the WQI were heavy metals (primarily Cd<sup>2+</sup>, Cr<sub>T</sub>, Ni<sup>2+</sup>, Pb<sup>2+</sup>) and fluoride contamination. Finally, Himalayan pine needle biochar was prepared and used for <span><math><mrow><msup><mrow><mi>P</mi><mi>b</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> remediation from wetland water samples collected in both seasons. The findings of this study provide valuable insights into the water quality characteristics of the five wetlands during two seasons, aiding in water management and decision-making processes for sustainable utilization and conservation of water resources.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224001132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

全球范围内对社会和环境都至关重要的湿地,由于人口和活动的不断增长,正在丧失其生态和水文功能。这种下降在大都市湿地尤为严重,那里的土地利用变化和发展压力更大。本文研究了德里5个城市湿地(Hauz Khas湖(HZL)、Sanjay湖(SL)、Bhalswa湖(BL)、Vasant Kunj湖(VKL)和Sanjay Van湖(SVL)在冬季(2023年1月14日至17日)和夏季(2023年5月13日至15日)的水质参数。在两个季节共采集了HZL、SL、BL、VKL和SVL各20个样本,并对24个理化参数进行了分析。采用相关矩阵和主成分分析(PCA)双标图进行多变量分析。采用Piper三线性图和Gibbs图进行水化学分析。采用氯度指数、钠吸附比(SAR)、Wilcox图和Kelly指数/比值评价灌溉用水适宜性。采用兰吉利尔饱和指数(LSI)和雷兹纳尔稳定指数(RSI)对工业用途的适用性进行了评估。通过水质指数(WQI)评价饮水适宜性。将平均(n = 3)水质参数值与BIS和WHO饮用水标准进行比较。两季HZL、SL、BL、VKL和SVL的平均pH值均为碱性(7.2 ~ 9.9)。冬季HZL、SL、BL、VKL、SVL分别有4项、9项、12项、7项、6项指标超过BIS允许限值。夏季也有类似的趋势,表明SVL和HZL的污染程度低于SL、BL和VKL。含氯指数、SAR、Kelly比和Wilcox图均显示BL水在两个季节都不适合灌溉。HZL、SL、BL、VKL和SVL的RSI值均大于8,表明两个季节采集的水样具有腐蚀性。影响WQI的主要因素是重金属(主要是Cd2+、CrT、Ni2+、Pb2+)和氟化物污染。最后,制备喜马拉雅松针生物炭,并将其用于两个季节采集的湿地水样中Pb2+的修复。本研究结果为了解5个湿地在两个季节的水质特征提供了有价值的见解,为水资源的可持续利用和保护提供了水管理和决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating the influences of seasonal water hydrochemistry variations and biochar-assisted heavy metal removal in Delhi’s urban wetlands: Implications for management strategies

Evaluating the influences of seasonal water hydrochemistry variations and biochar-assisted heavy metal removal in Delhi’s urban wetlands: Implications for management strategies
Wetlands globally, crucial to both society and the environment, are losing their ecological and hydrological functions due to growing human populations and activities. This decline is particularly severe in metropolitan wetlands, where land use changes and development pressures are more intense. This study focuses on evaluating the water quality parameters of Delhi’s five urban wetlands including Hauz Khas Lake (HZL), Sanjay Lake (SL), Bhalswa Lake (BL), Vasant Kunj Lake (VKL), and Sanjay Van Lake (SVL) during winter (14—17th January 2023) and summer (13—15th May 2023) seasons. A total of 200 samples (20 samples from each lake) from HZL, SL, BL, VKL, and SVL were collected and analysed for 24 physicochemical parameters in both the seasons. Multivariate analysis was performed using a correlation matrix and principal component analysis (PCA)–biplot. Hydrochemical analysis was performed using Piper trilinear and Gibbs diagrams. Water suitability for irrigation was accessed using the chlorinity index, sodium adsorption ratio (SAR), Wilcox diagram, and Kelly index/ratio. Suitability for industrial purposes was evaluated using the Langelier saturation index (LSI) and Ryznar stability index (RSI). Drinking water suitability was assessed through the water quality index (WQI). The average (n = 3) water quality parameter values were compared to BIS and WHO drinking water standards. The average pH for HZL, SL, BL, VKL and SVL was alkaline (ranging from 7.2 to 9.9) in both the seasons. In winter, 4 parameters exceeded BIS permissible limits in HZL, 9 in SL, 12 in BL, 7 in VKL, and 6 in SVL. A similar trend was observed in summer, indicating that SVL and HZL are less polluted than SL, BL, and VKL. The chlorinity index, SAR, Kelly ratio, and Wilcox diagram indicated BL water’s unsuitability for irrigation in both seasons. RSI values above 8 for HZL, SL, BL, VKL, and SVL suggest corrosive nature of the water samples collected in both seasons. The main factors affecting the WQI were heavy metals (primarily Cd2+, CrT, Ni2+, Pb2+) and fluoride contamination. Finally, Himalayan pine needle biochar was prepared and used for Pb2+ remediation from wetland water samples collected in both seasons. The findings of this study provide valuable insights into the water quality characteristics of the five wetlands during two seasons, aiding in water management and decision-making processes for sustainable utilization and conservation of water resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信