Advanced Optical Materials最新文献

筛选
英文 中文
Aqueous Afterglow Dispersion Enabling On‐Site Ratiometric Sensing of Mercury Ions 水性余辉弥散可实现汞离子的现场比率测量传感
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401509
Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai
{"title":"Aqueous Afterglow Dispersion Enabling On‐Site Ratiometric Sensing of Mercury Ions","authors":"Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai","doi":"10.1002/adom.202401509","DOIUrl":"https://doi.org/10.1002/adom.202401509","url":null,"abstract":"Pollution caused by heavy metal ions has become a global issue owing to their severe threat to the ecological environment and human health. However, it remains a considerable challenge to detect heavy metal ions in an efficient, selective, and high signal‐to‐noise ratio way. Herein, a portable and sensitive method is presented to probe Hg<jats:sup>2+</jats:sup> by using an ultralong afterglow dispersion. The in situ encapsulation of phosphorescent carbon dots (CDs) within rigid hydrogen‐bonded organic frameworks (HOFs) leads to ultralong room temperature phosphorescence (RTP) in water with a maximum lifetime of up to 974.86 ms. Moreover, the resultant CDs@HOFs material exhibits robust and long‐term RTP emission with enhanced performance under strongly acidic or alkaline conditions, which contributes to the practical detection of Hg<jats:sup>2+</jats:sup> in water. As such, an efficient and sensitive afterglow probe is facilely fabricated by integrating CDs@HOFs with a Hg<jats:sup>2+</jats:sup> probe Rhodamine B derivative (RhBTh), demonstrating selective sensing of Hg<jats:sup>2+</jats:sup> with greatly improved signal‐to‐noise ratios based on the triplet‐singlet Förster resonance energy transfer system (TS‐FRET). This work not only provides a reliable and versatile method for realizing robust RTP emission in water, but also expands the applications of afterglow materials in the field of optical sensing of toxic analytes.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"65 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Donor and Acceptor Modification on TADF and Roll‐Off Behaviors in Solution Processed OLED 供体和受体修饰对溶液加工型有机发光二极管中 TADF 和滚降行为的影响
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401881
Hee Tae Yang, Ye Ji Hyeon, Thi Na Le, Ji Eun Lee, Yun‐Hi Kim, Min Chul Suh
{"title":"Impact of Donor and Acceptor Modification on TADF and Roll‐Off Behaviors in Solution Processed OLED","authors":"Hee Tae Yang, Ye Ji Hyeon, Thi Na Le, Ji Eun Lee, Yun‐Hi Kim, Min Chul Suh","doi":"10.1002/adom.202401881","DOIUrl":"https://doi.org/10.1002/adom.202401881","url":null,"abstract":"Up‐conversion of triplet into singlet exciton in the emitting layer is believed to be one of the ways that thermally activated delayed fluorescent (TADF) materials may employ to reduce triplet exciton density hence preventing device quenching by triplet excitons. Yet, two donor‐acceptor type molecules; 5‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐12‐(3‐(triphenylsilyl) phenyl)‐5,12‐dihydroindolo[3,2‐a]carbazole (SiPhCzTrz) and 5‐phenyl‐12‐(4‐(4‐phenyl‐6‐(3‐(triphenylsilyl) phenyl)‐1,3,5‐triazin‐2‐yl)pheny‐l)‐5,12‐dihydroindolo [3,2‐a]carbazole (SiTrzPhCz), which exhibited different TADF properties depending on the relative positions of their electron donor unit (PhCz) and electron acceptor unit (Trz), show opposite behaviors. These materials are used as sensitizer in phosphorescent solution‐processed organic light emitting diodes (s‐OLEDs) showing moderately high current efficiencies of 19.3 and 20 cd/A, respectively. SiTrzPhCz exhibits stronger TADF properties compared to SiPhCzTrz; however, these stronger TADF characteristics lead to a more pronounced efficiency roll‐off, mainly due to the longer residence time of excitons in SiTrzPhCz, leading to exciton quenching. In contrast, due to their twisted structures, the efficiency roll‐off is efficiently suppressed, particularly for SiTrzPhCz, when both materials are used as hosts. Their twisted structures promote aggregate‐induced emission and prevent aggregation‐caused quenching. Further analysis of exciton dynamics reveals faster decay rate for both singlet and triplet densities in SiPhCzTrz compared to SiTrzPhCz, indicated by its higher fast prompt emission, k<jats:sub>FRET</jats:sub> and k<jats:sub>nr</jats:sub><jats:sup>T</jats:sup>.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"37 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-Dependent Recombination Dynamics of Photocarriers in CsPbBr3 Microcrystals Revealed by Ultrafast Terahertz Spectroscopy 超快太赫兹光谱揭示 CsPbBr3 微晶中光电载流子的温度依赖性重组动力学
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401162
Sheng H. Lee, Kyeongdeuk Moon, Muhammad Shoaib, Charles N. B. Pedorella, Kellen O'Brien, Meng-Ju Sher, Seokhyoung Kim, Tyler L. Cocker
{"title":"Temperature-Dependent Recombination Dynamics of Photocarriers in CsPbBr3 Microcrystals Revealed by Ultrafast Terahertz Spectroscopy","authors":"Sheng H. Lee,&nbsp;Kyeongdeuk Moon,&nbsp;Muhammad Shoaib,&nbsp;Charles N. B. Pedorella,&nbsp;Kellen O'Brien,&nbsp;Meng-Ju Sher,&nbsp;Seokhyoung Kim,&nbsp;Tyler L. Cocker","doi":"10.1002/adom.202401162","DOIUrl":"10.1002/adom.202401162","url":null,"abstract":"<p>The ultrafast dynamics of photoexcited charge carriers are studied in micron-scale crystals composed of the inorganic perovskite CsPbBr<sub>3</sub> with time-resolved terahertz spectroscopy. Exciting with photon energy close to the band edge, it is found that a fast (&lt;10 ps) decay emerges in the terahertz photoconductivity with increasing pump fluence and decreasing temperature, dominating the dynamics at 4 K. The fluence-dependent dynamics can be globally fit by a nonlinear recombination model, which reveals that the influence of different nonlinear recombination mechanisms in the studied pump fluence range depends on temperature. Whereas the Auger scattering rate decreases with decreasing temperature from 77 to 4 K, the radiative recombination rate increases by three orders of magnitude. Spectroscopically, the terahertz photoconductivity resembles a Drude response at all delays, yet an additional Lorentz component due to an above-bandwidth resonance is needed to fully reproduce the data.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 30","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intramolecular Through‐Space Charge‐Transfer Effect for Achieving Room‐Temperature Phosphorescence in Amorphous Film 实现非晶薄膜室温磷光的分子内穿透空间电荷转移效应
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202400976
Dehai Dou, Xin Zhou, Tian Wang, Qiqi Yang, Xiao Tan, Zhitian Ling, Marvin Manz, Xiaomin Liu, Gert‐Jan A. H. Wetzelaer, Xiaosong Li, Martin Baumgarten, Paul W. M. Blom, Yungui Li
{"title":"Intramolecular Through‐Space Charge‐Transfer Effect for Achieving Room‐Temperature Phosphorescence in Amorphous Film","authors":"Dehai Dou, Xin Zhou, Tian Wang, Qiqi Yang, Xiao Tan, Zhitian Ling, Marvin Manz, Xiaomin Liu, Gert‐Jan A. H. Wetzelaer, Xiaosong Li, Martin Baumgarten, Paul W. M. Blom, Yungui Li","doi":"10.1002/adom.202400976","DOIUrl":"https://doi.org/10.1002/adom.202400976","url":null,"abstract":"Organic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"3 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skyrmion Quasi‐Bound States in the Continuum for 3D Light Trapping in Arbitrarily Large Volumes 用于在任意大体积中进行三维光捕获的连续真空中的天融准界态
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401643
Haoye Qin, Zhe Zhang, Qiaolu Chen, Zhechen Zhang, Romain Fleury
{"title":"Skyrmion Quasi‐Bound States in the Continuum for 3D Light Trapping in Arbitrarily Large Volumes","authors":"Haoye Qin, Zhe Zhang, Qiaolu Chen, Zhechen Zhang, Romain Fleury","doi":"10.1002/adom.202401643","DOIUrl":"https://doi.org/10.1002/adom.202401643","url":null,"abstract":"Real‐world resonances face surface‐scaling radiation leakage, hindering light confinement in optically large systems. Conventional bound states in continuum (BICs) challenge this by enabling states with theoretically infinite lifetimes in 2D periodic structures. However, when fabricated, the truncation of these systems to finite sizes inevitably re‐introduces leakage, uncontrollably downgrading their quality factors. Here, a novel form of finite‐size 3D quasi‐BICs (QBICs) is demonstrated that leverage a skyrmion field topology of Bloch modes in 3D cubic photonic crystals. The associated finite systems exhibit highly suppressed radiation in all three spatial directions, with a remarkable exponential volume‐scaling of quality factors. With an unprecedentedly large 3D prototype of 24 cm<jats:sup>3</jats:sup> and great scalability, the existence of skyrmion QBICs is experimentally proven through unique far‐field polarization wrapping and spectral singularity. These demonstrations enable to have omnidirectional topological radiation suppression, 3D vortex generation, and access to arbitrarily large volume and volumetric interfaces. 3D QBIC may empower extreme 3D light‐trapping, enhanced volumetric sensing, and topological skyrmion emitters.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"17 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum 通过布里渊区折叠诱导的连续准束缚态实现超高本底限制探测性
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401857
Tianyun Zhu, Wenji Jing, Jie Deng, Bo Wang, Ruowen Wang, Tao Ye, Mengdie Shi, Jiexian Ye, Tianyuan Cui, Jinyong Shen, Fangzhe Li, Jun Ning, Jing Zhou, Xiaoshuang Chen
{"title":"Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum","authors":"Tianyun Zhu, Wenji Jing, Jie Deng, Bo Wang, Ruowen Wang, Tao Ye, Mengdie Shi, Jiexian Ye, Tianyuan Cui, Jinyong Shen, Fangzhe Li, Jun Ning, Jing Zhou, Xiaoshuang Chen","doi":"10.1002/adom.202401857","DOIUrl":"https://doi.org/10.1002/adom.202401857","url":null,"abstract":"During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This paper proposes to break this limitation by creating a narrow photoresponse band with a high peak responsivity to reject the background radiation and enhance the responsivity to the target with characteristic emission lines. This scheme is numerically demonstrated in a dimerized grating integrated quantum well infrared photodetector, based on critical coupling with a Brillouin zone folding induced quasi‐bound state in the continuum (BIC). The asymmetric deformation of the grating structure folds the photonic band and generates a quasi‐BIC with a tunable high radiation <jats:italic>Q</jats:italic> factor (<jats:italic>Q<jats:sub>R</jats:sub></jats:italic>) at the Γ point. By reducing the doping concentration of the quantum wells for a high absorption <jats:italic>Q</jats:italic> factor (<jats:italic>Q<jats:sub>A</jats:sub></jats:italic>) and tuning the <jats:italic>Q<jats:sub>R</jats:sub></jats:italic> to make <jats:italic>Q<jats:sub>R</jats:sub></jats:italic> = <jats:italic>Q<jats:sub>A</jats:sub></jats:italic> for critical coupling, a narrowband photoresponse with a high peak responsivity is achieved and the background‐limited specific detectivity of 4.55 × 10<jats:sup>12</jats:sup> cm Hz<jats:sup>1/2</jats:sup> W<jats:sup>−1</jats:sup> is obtained for a 2π field of view, surpassing the ideal‐photoconductor limit by 92 times.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"29 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of Circularly Polarized Light with Molecular and Structural Chirality: Chiral Lanthanide Complexes and Cellulose Nanocrystals 圆偏振光与分子和结构手性的相互作用:手性镧系配合物和纤维素纳米晶体
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401714
Matteo Cei, Alessandra Operamolla, Francesco Zinna
{"title":"Interplay of Circularly Polarized Light with Molecular and Structural Chirality: Chiral Lanthanide Complexes and Cellulose Nanocrystals","authors":"Matteo Cei, Alessandra Operamolla, Francesco Zinna","doi":"10.1002/adom.202401714","DOIUrl":"https://doi.org/10.1002/adom.202401714","url":null,"abstract":"The interaction of circularly polarized (CP) light with chiral matter at different scales opens several possibilities of light manipulation in photonic and electronic devices. Here it is shown that in a multilayer architecture, it is possible to take advantage of the polarization‐selective reflection of the nematic arrangement of cellulose nanocrystals and the strong intrinsic CP luminescence (CPL) of the various bands of chiral Eu complexes. In this way, both the intrinsic CPL and total emission of the complex are modified depending on the enantiomer applied and on the detection geometry. This concept may apply for polarization control in electronic and photonic devices and polarized optical cavities.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"6 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Low‐Noise, High‐Detectivity, Stable, and Flexible Perovskite Mesh Nanowire Photodetectors by Phenylethylamine Iodine Doping Strategy 通过苯乙胺碘掺杂策略实现低噪声、高分辨力、稳定且灵活的 Perovskite 网状纳米线光电探测器
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401829
Dingjun Wu, Yapeng Tang, Bin Ren, Liang Chu, Hao Wang, Hai Zhou
{"title":"Enabling Low‐Noise, High‐Detectivity, Stable, and Flexible Perovskite Mesh Nanowire Photodetectors by Phenylethylamine Iodine Doping Strategy","authors":"Dingjun Wu, Yapeng Tang, Bin Ren, Liang Chu, Hao Wang, Hai Zhou","doi":"10.1002/adom.202401829","DOIUrl":"https://doi.org/10.1002/adom.202401829","url":null,"abstract":"The poor stability, high noise, and low detectivity (<jats:italic>D<jats:sup>*</jats:sup></jats:italic>) of perovskite mesh nanowire (PMN) photodetectors (PDs) seriously hinder their practical applications. Here, a phenylethylamine iodine doping strategy (PIDS) is introduced to solve these problems. The PIDS leads to the formation of 2D perovskite PEA<jats:sub>2</jats:sub>MA<jats:sub>x‐1</jats:sub>Pb<jats:sub>x</jats:sub>I<jats:sub>3x+1</jats:sub> (PEA = phenylethylamine, MA = methylamine) within MAPbI<jats:sub>3</jats:sub> PMN, which not only prevents water and oxygen erosion to thwart PMN degradation but also inhibits the transport of dark state carriers to reduce dark current. As a result, the noise, <jats:italic>D<jats:sup>*</jats:sup></jats:italic>, and stability of the PMN PD are simultaneously improved. The device exhibits low noise current (7.61 × 10<jats:sup>−15</jats:sup> A Hz<jats:sup>−1/2</jats:sup>) and high <jats:italic>D<jats:sup>*</jats:sup></jats:italic> of 3.2 × 10<jats:sup>14</jats:sup> Jones, the highest <jats:italic>D<jats:sup>*</jats:sup></jats:italic> value for PMN PDs reported to date. Moreover, the unpacked device sustains 100% of its initial performance after 2880 h of storage in the air (45–55% humidity), enabling it as the most stable MAPbI<jats:sub>3</jats:sub> perovskite micro/nanostructure PD reported to date. Furthermore, the flexible device with PIDS exhibits comparable performance to that of the rigid device as well as great mechanical stability. Finally, the flexible device with PIDS demonstrates excellent optical imaging capability and a higher precision optical imaging potential than the commercial silicon photodiode S2386.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"3 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sn2+/Pb2+ Doping‐Induced Highly Transparent Boroaluminate Microcrystalline Glass With Deep Traps for Long‐Term Optical Storage and Time‐Lapse X‐ray Imaging 用于长期光存储和延时 X 射线成像的 Sn2+/Pb2+ 掺杂诱导的具有深阱的高透明硼铝酸盐微晶玻璃
IF 9 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401952
Panpan Li, Enhai Song, Weichao Wang, Qinyuan Zhang
{"title":"Sn2+/Pb2+ Doping‐Induced Highly Transparent Boroaluminate Microcrystalline Glass With Deep Traps for Long‐Term Optical Storage and Time‐Lapse X‐ray Imaging","authors":"Panpan Li, Enhai Song, Weichao Wang, Qinyuan Zhang","doi":"10.1002/adom.202401952","DOIUrl":"https://doi.org/10.1002/adom.202401952","url":null,"abstract":"The development of microcrystalline glass‐ceramics with high transparency and deep trap energy levels is crucial for the cost‐effective and large‐scale production of scintillators and optical data storage applications. In this study, the incorporation of highly electronegative divalent tin (Sn<jats:sup>2+</jats:sup>) plays a key role in modulating the network structure of borate glass. This leads to the successful synthesis of SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup> microcrystalline glass with high transparency, reaching up to 80%, and excellent crystallinity. Additionally, a series of non‐optically active ions with different valence states is co‐doped with Eu<jats:sup>2+</jats:sup> to fine‐tune the trap levels of the SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> microcrystals. All samples maintain high crystallinity and exhibit good transparency. In particular, the Pb<jats:sup>2+</jats:sup> ion co‐doped samples achieve an increased trap energy level of 1.28 eV, significantly enhancing their capacity to capture X‐rays and ultraviolet light. Density functional theory calculations reveal that this enhancement is due to severe lattice distortion caused by Pb<jats:sup>2+</jats:sup> ions occupying interstitial sites in SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>. Utilizing the SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup>, Pb<jats:sup>2+</jats:sup> glass‐ceramics materials, X‐ray imaging with a delay of up to 210 s and optical information storage for &gt;60 d is achieved. This study provides valuable insights into the crystal growth and trap modulation of persistent luminescent materials within a three‐dimensional glass network structure.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"15 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cs/FA Gradient Distribution in Perovskite NCs Enables Sub-Nanometer Spectral Regulation and BT.2020 Pure-Green Electroluminescence 包光体 NC 中的 Cs/FA 梯度分布可实现亚纳米级光谱调节和 BT.2020 纯绿色电致发光
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-09-17 DOI: 10.1002/adom.202401482
Linxiang Yang, Yihui Zhou, Hengyang Xiang, Shichen Yuan, Qingsong Shan, Shuai Zhang, Yousheng Zou, Yan Li, Hongting Chen, Tao Fang, Danni Yan, An Xie, Haibo Zeng
{"title":"Cs/FA Gradient Distribution in Perovskite NCs Enables Sub-Nanometer Spectral Regulation and BT.2020 Pure-Green Electroluminescence","authors":"Linxiang Yang,&nbsp;Yihui Zhou,&nbsp;Hengyang Xiang,&nbsp;Shichen Yuan,&nbsp;Qingsong Shan,&nbsp;Shuai Zhang,&nbsp;Yousheng Zou,&nbsp;Yan Li,&nbsp;Hongting Chen,&nbsp;Tao Fang,&nbsp;Danni Yan,&nbsp;An Xie,&nbsp;Haibo Zeng","doi":"10.1002/adom.202401482","DOIUrl":"10.1002/adom.202401482","url":null,"abstract":"<p>Lead halide perovskite exhibits great prospects in next-generation display. However, single-cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low-efficiency in light-emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co-competition strategy is proposed for fabricating Cs<sub>1−x</sub>FA<sub>x</sub>PbBr<sub>3</sub> NCs, which reveals the spatial distribution of A-site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure-green range with an accuracy of sub-nanometer, further promotes the comprehensively filling-suppressing effect of incongruous lattice and surface defects. Finally, the high-precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure-green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20-fold improvement in lifetime, indicating tremendous potential in next-generation display.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 31","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信