基于高性能近红外发光二极管前驱体活性优化的Cu─In─S量子点合成

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuanyuan Xiao, Zhiheng Cheng, Jingjing Xu, Zongzhe Li, Jiaming Xie, Shujuan Liu, Baofeng Zhao, Yun Yu, Tianrong Zhu, Qingliang You, Biao Xiao, Renqiang Yang
{"title":"基于高性能近红外发光二极管前驱体活性优化的Cu─In─S量子点合成","authors":"Yuanyuan Xiao,&nbsp;Zhiheng Cheng,&nbsp;Jingjing Xu,&nbsp;Zongzhe Li,&nbsp;Jiaming Xie,&nbsp;Shujuan Liu,&nbsp;Baofeng Zhao,&nbsp;Yun Yu,&nbsp;Tianrong Zhu,&nbsp;Qingliang You,&nbsp;Biao Xiao,&nbsp;Renqiang Yang","doi":"10.1002/adom.202500181","DOIUrl":null,"url":null,"abstract":"<p>Near-infrared quantum dot light-emitting diodes (NIR-QLEDs) hold great promise for optoelectronic applications. However, their low luminous efficacy and poor stability restrict their practical use. This study addresses these challenges by synthesizing environment-friendly Cu─In─S (CIS) quantum dots (QDs) using diisopentyl sulfide to enhance the reactivity of the In precursor. The resulting QDs produce a photoluminescence quantum yield (PLQY) of 40.0%. High-quality QDs are obtained by coating with a ZnS shell, resulting in a PLQY of 93.3%. Photoluminescence analysis reveals that the luminescence mechanism is predominantly governed by donor–acceptor pair recombination. The incorporation of VOC<sub>2</sub>O<sub>4</sub> as a hole injection layer into NIR-QLEDs prepared from the QDs enhances hole injection and reduces efficiency roll-off, leading to a peak external quantum efficiency of 17.6%, the highest reported for NIR-QLEDs with emissions exceeding 800 nm. Impedance spectroscopy confirms improved charge injection and transport characteristics. This work underscores the critical role of material synthesis and device architecture in optimizing the performance of NIR-QLEDs for practical applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 17","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Cu─In─S Quantum Dots Through Precursor Activity Optimization for High-Performance Near-Infrared Light Emitting Diodes\",\"authors\":\"Yuanyuan Xiao,&nbsp;Zhiheng Cheng,&nbsp;Jingjing Xu,&nbsp;Zongzhe Li,&nbsp;Jiaming Xie,&nbsp;Shujuan Liu,&nbsp;Baofeng Zhao,&nbsp;Yun Yu,&nbsp;Tianrong Zhu,&nbsp;Qingliang You,&nbsp;Biao Xiao,&nbsp;Renqiang Yang\",\"doi\":\"10.1002/adom.202500181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Near-infrared quantum dot light-emitting diodes (NIR-QLEDs) hold great promise for optoelectronic applications. However, their low luminous efficacy and poor stability restrict their practical use. This study addresses these challenges by synthesizing environment-friendly Cu─In─S (CIS) quantum dots (QDs) using diisopentyl sulfide to enhance the reactivity of the In precursor. The resulting QDs produce a photoluminescence quantum yield (PLQY) of 40.0%. High-quality QDs are obtained by coating with a ZnS shell, resulting in a PLQY of 93.3%. Photoluminescence analysis reveals that the luminescence mechanism is predominantly governed by donor–acceptor pair recombination. The incorporation of VOC<sub>2</sub>O<sub>4</sub> as a hole injection layer into NIR-QLEDs prepared from the QDs enhances hole injection and reduces efficiency roll-off, leading to a peak external quantum efficiency of 17.6%, the highest reported for NIR-QLEDs with emissions exceeding 800 nm. Impedance spectroscopy confirms improved charge injection and transport characteristics. This work underscores the critical role of material synthesis and device architecture in optimizing the performance of NIR-QLEDs for practical applications.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 17\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500181\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500181","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外量子点发光二极管(nir - qled)在光电应用中具有很大的前景。但其发光效率低,稳定性差,限制了其实际应用。本研究通过使用二异戊基硫化物合成环境友好型Cu─In─S (CIS)量子点(QDs)来提高In前驱体的反应性,从而解决了这些挑战。所得到的量子点产生的光致发光量子产率(PLQY)为40.0%。用ZnS包覆得到了高质量的量子点,PLQY达到93.3%。光致发光分析表明,其发光机制主要受供体-受体对重组的支配。将VOC2O4作为空穴注入层加入到由量子点制备的nir - qled中,增强了空穴注入,减少了效率滚降,导致峰值外量子效率达到17.6%,这是报道的辐射超过800 nm的nir - qled的最高外量子效率。阻抗谱证实了改进的电荷注入和输运特性。这项工作强调了材料合成和器件结构在优化nir - qled的实际应用性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Cu─In─S Quantum Dots Through Precursor Activity Optimization for High-Performance Near-Infrared Light Emitting Diodes

Synthesis of Cu─In─S Quantum Dots Through Precursor Activity Optimization for High-Performance Near-Infrared Light Emitting Diodes

Near-infrared quantum dot light-emitting diodes (NIR-QLEDs) hold great promise for optoelectronic applications. However, their low luminous efficacy and poor stability restrict their practical use. This study addresses these challenges by synthesizing environment-friendly Cu─In─S (CIS) quantum dots (QDs) using diisopentyl sulfide to enhance the reactivity of the In precursor. The resulting QDs produce a photoluminescence quantum yield (PLQY) of 40.0%. High-quality QDs are obtained by coating with a ZnS shell, resulting in a PLQY of 93.3%. Photoluminescence analysis reveals that the luminescence mechanism is predominantly governed by donor–acceptor pair recombination. The incorporation of VOC2O4 as a hole injection layer into NIR-QLEDs prepared from the QDs enhances hole injection and reduces efficiency roll-off, leading to a peak external quantum efficiency of 17.6%, the highest reported for NIR-QLEDs with emissions exceeding 800 nm. Impedance spectroscopy confirms improved charge injection and transport characteristics. This work underscores the critical role of material synthesis and device architecture in optimizing the performance of NIR-QLEDs for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信