Multiscale Physics-Informed Neural Networks for the Inverse Design of Hyperuniform Optical Materials

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Roberto Riganti, Yilin Zhu, Wei Cai, Salvatore Torquato, Luca Dal Negro
{"title":"Multiscale Physics-Informed Neural Networks for the Inverse Design of Hyperuniform Optical Materials","authors":"Roberto Riganti,&nbsp;Yilin Zhu,&nbsp;Wei Cai,&nbsp;Salvatore Torquato,&nbsp;Luca Dal Negro","doi":"10.1002/adom.202403304","DOIUrl":null,"url":null,"abstract":"<p>In this study, multiscale physics-informed neural networks (MscalePINNs) are employed for the inverse design of finite-size photonic materials with stealthy hyperuniform (SHU) disordered geometries. Specifically, MscalePINNs are shown to capture the fast spatial variations of complex fields scattered by arrays of dielectric nanocylinders arranged according to isotropic SHU point patterns, thus enabling a systematic methodology to inversely retrieve their effective dielectric profiles. This approach extends the recently developed high-frequency homogenization theory of hyperuniform media and retrieves more general permittivity profiles for applications-relevant finite-size SHU and optical systems, unveiling unique features related to their isotropic nature. In particular, the existence of a transparency region beyond the long-wavelength approximation is numerically corroborated, enabling the retrieval of effective and isotropic locally homogeneous media even without disorder-averaging, in contrast to the case of uncorrelated Poisson random patterns. The flexible multiscale network approach introduced here enables the efficient inverse design of more general effective media and finite-size optical metamaterials with isotropic electromagnetic responses beyond the limitations of traditional homogenization theories.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 16","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403304","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, multiscale physics-informed neural networks (MscalePINNs) are employed for the inverse design of finite-size photonic materials with stealthy hyperuniform (SHU) disordered geometries. Specifically, MscalePINNs are shown to capture the fast spatial variations of complex fields scattered by arrays of dielectric nanocylinders arranged according to isotropic SHU point patterns, thus enabling a systematic methodology to inversely retrieve their effective dielectric profiles. This approach extends the recently developed high-frequency homogenization theory of hyperuniform media and retrieves more general permittivity profiles for applications-relevant finite-size SHU and optical systems, unveiling unique features related to their isotropic nature. In particular, the existence of a transparency region beyond the long-wavelength approximation is numerically corroborated, enabling the retrieval of effective and isotropic locally homogeneous media even without disorder-averaging, in contrast to the case of uncorrelated Poisson random patterns. The flexible multiscale network approach introduced here enables the efficient inverse design of more general effective media and finite-size optical metamaterials with isotropic electromagnetic responses beyond the limitations of traditional homogenization theories.

Abstract Image

用于超均匀光学材料反设计的多尺度物理信息神经网络
在这项研究中,多尺度物理信息神经网络(MscalePINNs)被用于具有隐形超均匀(SHU)无序几何形状的有限尺寸光子材料的逆向设计。具体来说,MscalePINNs可以捕捉到根据各向同性SHU点模式排列的介电纳米柱阵列散射的复杂场的快速空间变化,从而实现了一种系统的方法来反向检索其有效介电剖面。该方法扩展了最近发展的超均匀介质的高频均匀化理论,并检索了与应用相关的有限尺寸SHU和光学系统的更一般的介电常数曲线,揭示了与其各向同性性质相关的独特特征。特别是,在长波长近似之外的透明区域的存在得到了数值证实,与不相关泊松随机模式的情况相比,即使没有无序平均,也可以检索有效的和各向同性的局部均匀介质。本文介绍的灵活的多尺度网络方法使具有各向同性电磁响应的更一般有效介质和有限尺寸光学超材料的有效反设计超越了传统均匀化理论的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信