{"title":"Investigation of motion response suppression characteristics in floating platforms equipped with novel spiral side plates","authors":"Yu Jing-mei, Bai Chun-long","doi":"10.1002/ese3.1939","DOIUrl":"https://doi.org/10.1002/ese3.1939","url":null,"abstract":"<p>To enhance the stability of floating wind turbine platforms, this study combines the structural characteristics of helical side plates and proposes the installation of serrated helical side plates on Spar wind turbine platforms. Based on potential flow theory, the present study employs blade element momentum theory and radiation-diffraction theory. Upon establishing a dynamic data link library, wind-wave coupling was implemented, and the dynamic response characteristics of platforms with different helical side plates were compared. The results indicate that in the frequency domain analysis, the platform with serrated helical side plates demonstrates reduced sensitivity to waves, with a particularly notable increase in added mass in the heave direction, suggesting excellent hydrodynamic performance. In the time domain analysis, improvements in the platform's surge and heave stability performances were observed, measuring 10.99% and 10.64%, respectively, in extreme conditions. Owing to the unique features of the serrated structure, the tension in the mooring chains on the wave-facing side is reduced, thereby effectively lowering the fatigue load on the mooring chains.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5160-5170"},"PeriodicalIF":3.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on the utilization of Fly ash solid waste in tunnel shotcrete materials","authors":"Zan Juncai, Ren Wanxing, Guo Qing","doi":"10.1002/ese3.1917","DOIUrl":"https://doi.org/10.1002/ese3.1917","url":null,"abstract":"<p>Fly ash has emerged as a prominent solid waste in China, leading to various environmental concerns and posing a threat to the health of living organisms, including humans. To enhance the industrial applicability of this waste material, a novel approach has been proposed wherein sand is replaced with fly ash as the primary raw material for wall grouting of coal mine roadways. To address the issue of low compressive strength and to improve the properties of fly ash shotcrete materials, a method employing an alkali activator to stimulate the chemical activity of fly ash has been put forward. The long-term effectiveness of the shotcrete material has been evaluated using compressive strength testing and scanning electron microscopy testing methods. The impact of replacing sand with fly ash on the compressive strength of shotcrete and the activation effect of sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>), NaOH, and Na<sub>2</sub>SiO<sub>3</sub> on fly ash shotcrete have been studied. The results indicate that the compressive strength of fly ash shotcrete shows optimal improvement when the content of Na<sub>2</sub>SO<sub>4</sub> is 3%. The ideal ratio of cement to fly ash is 1:3. Therefore, incorporating an appropriate amount of alkaline activator could effectively address the compressive strength issues of fly ash shotcrete materials.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4753-4762"},"PeriodicalIF":3.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1917","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengjun Qin, Zhishun Yu, Baofu Wu, Jiayang Pang, Dengyun Jiang, Haiku Zhang, Jitao Liu, Hong Hua, Xiaobing Liu
{"title":"Numerical simulation of multiphase flow and prediction of sediment wear in a large Pelton turbine","authors":"Mengjun Qin, Zhishun Yu, Baofu Wu, Jiayang Pang, Dengyun Jiang, Haiku Zhang, Jitao Liu, Hong Hua, Xiaobing Liu","doi":"10.1002/ese3.1925","DOIUrl":"https://doi.org/10.1002/ese3.1925","url":null,"abstract":"<p>The problem of sediment wear presents a significant challenge for hydraulic turbines operating in sediment-rich rivers, particularly for high-head Pelton turbines. In this study, the VOF model, SST <i>k</i>–<i>ω</i> model, and DPM model were employed to simulate the gas–liquid–solid three-phase flow within a large Pelton turbine, which operates under a rated water head of 671 m and has a single capacity of 500 MW, at a hydropower station situated on a sediment-laden river. The sediment wear prediction model, derived from the sediment wear test of the model turbine, was utilized to forecast the sediment wear on the flow components of the Pelton turbine at the hydropower station. The results show that there are obvious pressure and velocity gradients near the nozzle outlet of the Pelton turbine in the power station, and the wear of the nozzle surface is gradually increasing, and the wear in the downstream area of the nozzle is more serious. The wear rate at the needle tip surface reached 1.372 μm/h, while the socket ring surface exhibited a wear rate of 3.175 μm/h. he highest wear rate recorded for the water bucket is 0.940 μm/h. After a year of continuous operation, the maximum erosion observed was 5.62 mm on the runner bucket made of stainless steel and wear-resistant metal, 8.23 mm on the spray needle, and 19.05 mm on the nozzle mouth ring, highlighting the severity of sediment wear on the Pelton turbine. It is recommended that surface treatment technology be applied to the flow-through components of the Pelton turbine at this hydropower station to enhance the wear resistance of the turbine and extend the operational life of the unit.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5031-5044"},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergetic effect of iron and tungsten on molybdenum-doped HZSM-5 zeolite in catalytic methane dehydroaromatization","authors":"Ronald. W. Musamali, Yusuf. M. Isa","doi":"10.1002/ese3.1919","DOIUrl":"https://doi.org/10.1002/ese3.1919","url":null,"abstract":"<p>Methane dehydroaromatization is a viable route for production of carbon and valuable petrochemicals. Unlike Fischer–Tropsch and methanol synthesis processes which have been scaled up to commercial level, development of methane dehydroaromatization to commercial level has been hampered by various challenges. In this work, a 5.4 wt. % trimetallic (Fe-W-Mo/HZSM-5) catalyst has been synthesized, characterized, and applied in catalytic methane dehydroaromatization reaction. A gas chromatograph was used to analyze both liquid and gaseous products from the reactor. Based on 0.0013 moles of reacted methane after 240 min time on stream at 750<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>°C</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, GHSV 960 mlg<sup>-1</sup>cath<sup>-1</sup>, and atmospheric pressure, a 5.4% Mo/HZSM-5 catalyst recorded 7.9% methane conversion, 10.6% C<sub>2</sub> hydrocarbon selectivity, 51.8% benzene selectivity, 9.8% toluene selectivity and 27.8% coke selectivity. Doping Mo/HZSM-5 with Fe reduced methane conversion by 4.0%, increased C<sub>2</sub> hydrocarbon selectivity by 1.7%, reduced benzene selectivity by 6.2% and increased toluene and coke selectivity by 1.8% and 2.8% respectively. Doping Mo/HZSM-5 with W increased methane conversion by 7.3%, reduced C<sub>2</sub> hydrocarbon selectivity by 2.1%, reduced benzene selectivity by 7.6% and increased toluene and coke selectivity by 0.3% and 9.4% respectively. When iron and tungsten were loaded onto Mo/HZSM-5, catalytic activity of the tri-metallic catalyst in methane conversion reduced by 2.0%, C<sub>2</sub> hydrocarbon selectivity increased by 2.7%, benzene selectivity reduced by 3.1%, toluene selectivity reduced by 3.7%, and coke selectivity increased by 4.1%. Therefore, this present work demonstrates that metal synergy in a tri-metallic catalyst plays a role in methane conversion and selectivity towards useful hydrocarbons.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5008-5018"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wang Yonglong, Yu Zaijiang, Guo Jiakuan, Du Kang, Ma Denghui, Zhao Aoqi
{"title":"Mechanism and application of drill pipe bending induced borehole collapse in soft coal seam drilling","authors":"Wang Yonglong, Yu Zaijiang, Guo Jiakuan, Du Kang, Ma Denghui, Zhao Aoqi","doi":"10.1002/ese3.1921","DOIUrl":"https://doi.org/10.1002/ese3.1921","url":null,"abstract":"<p>Gas extraction drilling is a necessary measure for managing gas hazards. For soft coal seams where gas extraction drilling holes are prone to collapse, it is believed that drill rod disturbance is the main cause of hole collapse. This study proposes a research approach to reduce wall stress by optimizing the drill rod structure. Through theoretical analysis, numerical simulation, and industrial tests, a stress model for the drill rod inside the hole was established, and a wall stress equation was derived. The effects of various parameters on wall stress were analyzed. The study suggests optimizing the drill rod structure to reduce the disturbance-induced wall stress. SolidWorks was used for drilling stress simulation, and a four-winged concave groove drill rod was developed. After strength verification, comparative industrial tests were conducted. The research results show that as the line density increases, the wall stress of the drilling hole increases. As the length of the suspended section increases, the wall stress initially decreases and then increases. With increasing drilling thrust, wall stress increases linearly, and the growth rate is greater with a larger diameter difference between the drill hole and the drill rod. Numerical simulation results indicate that the critical point maximum stress at the hole entrance, the critical point maximum stress at the hole bottom, and the average stress at the bottom section of the four-winged concave groove drill rod with a concavity of 5 are significantly reduced compared to those of circular and grooved drill rods. Industrial test results show that using the four-winged concave groove drill rod significantly reduces the extent of hole collapse. This study provides a reference for addressing the issue of hole collapse in gas extraction drilling for soft coal seams.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4763-4772"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Houjiang Fan, Xiaoqiang Liu, Gang Li, Xiang Li, Ahmed E. Radwan, Shuai Yin
{"title":"Study on characteristics, efficiency, and variations of water flooding in different stages for low permeability oil sandstone","authors":"Houjiang Fan, Xiaoqiang Liu, Gang Li, Xiang Li, Ahmed E. Radwan, Shuai Yin","doi":"10.1002/ese3.1942","DOIUrl":"https://doi.org/10.1002/ese3.1942","url":null,"abstract":"<p>Water flooding is an important way to improve recovery in low-permeability sandstone oil reservoirs. How to decouple the water flooding process using dynamic and static information is a hot topic. In this paper, taking the Paleocene low-permeability oil sandstone, BY area, eastern Nanxiang Basin as an example, the microscopic water flooding process in the low-permeability sandstone matrix was systematically investigated, and the characteristics of water channeling under the conditions of fracture existence were analyzed using the dynamic and static monitoring data. The results show that the target layer mainly develops frequently thin stacked composite sand bodies. Under the combined influence of matrix and fracture seepage, the low-permeability sandstone developed by water flooding shows that there is a single direction of efficiency. The direction of advantageous water advancement is 45° north–east, and the speed of water flooding advancement is 2.57 m/day. Microscopic water-drive oil experiments show that bound water is mainly distributed in the original low-permeability sandstone as a membrane in the pore wall and as short rods in the throat. Differences in pore structure and petrophysical properties affect the residual oil content and degree of oil recovery. For sandstones with good petrophysical properties, mild water flooding can improve crude oil recovery. The increase in oil production is mainly concentrated in the early stage of water flooding development, and the increase in oil recovery degree is not significant with the increase in injection multiples in the middle and late stages. However, for sandstones with relatively poor petrophysical properties, water flooding is more effective in the early and late stages than in the middle stages. Therefore, it is necessary to adjust the water flooding measures according to the differences in the petrophysical properties of the sand body. Local tectonics and natural fracture strikes are important factors affecting the direction of the expansion of water flooding fractures. Overall, the prevention of water channeling in low-permeability sandstones has to take into account the complex coupling between water flooding fractures, natural fractures, and hydraulic fractures.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5245-5265"},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1942","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junwei Zhao, Ling Zhang, Lei Tian, Yingtao Yang, Gongyang Chen
{"title":"Distributary channel type and high-quality reservoirs in tight sandstone—A case study on the outcrops and reservoirs of Xujiahe formation in Western Sichuan Basin","authors":"Junwei Zhao, Ling Zhang, Lei Tian, Yingtao Yang, Gongyang Chen","doi":"10.1002/ese3.1940","DOIUrl":"https://doi.org/10.1002/ese3.1940","url":null,"abstract":"<p>The distributary channels in shallow-water delta are well-developed in tight sandstone. There are few studies on the channel type and diagenetic differences among them. To illustrate the relationship between channel types and high-quality reservoirs, this study summarizes the lithofacies types and sequences in the second member of the Xujiahe Formation. We use core data, outcrops, and modern sediments observation, scanning energy spectrum, and rock thin sections. The lithofacies can be divided into 15 types, and there are four types of vertical lithofacies sequence. Lithofacies sequences are different in lithofacies, channel scale, reservoir porosity and permeability, and so forth. They are formed in various hydrodynamic environments. With the continuous bifurcation of the channels, the width and depth of the channels are decreasing, forming different lithofacies sequences. Four types of distributary channels are classified. The characteristics of these channels are described, and the sedimentary models are established. Distributary channel types are related to the diagenetic process. Channel type I and the bottom of type II develop moderate compaction–dissolution diagenetic facies, the middle and upper parts of type II and type III can develop strong compaction, moderate compaction–dissolution, or strong cementation diagenetic facies, and type IV can develop strong compaction diagenetic facies. High-quality reservoirs are developed in limitedly distributed in distributary channels of type I and type II, and part of type III. This study provides a useful view for evaluating high-quality reservoirs based on distributary channel types.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5119-5144"},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuming Huo, Shaozhuo Wang, Defu Zhu, Zhonglun Wang
{"title":"Optimization of drawing sequence in longwall top coal caving mining through an FDM-DEM model","authors":"Yuming Huo, Shaozhuo Wang, Defu Zhu, Zhonglun Wang","doi":"10.1002/ese3.1944","DOIUrl":"https://doi.org/10.1002/ese3.1944","url":null,"abstract":"<p>The Longwall top coal caving (LTCC) technology is regarded as one of the most crucial approaches for exploiting thick coal seams. A crucial and effective approach for improving the recovery rate of top coal and reducing coal resource losses in LTCC faces is to reasonably select process parameters based on actual mining and geological conditions of different mines. The main focus of this paper is the engineering background of the 12,309 LTCC face in Wangjialing Coal Mine. A numerical model is developed using FALC3D and PFC3D software, employing a finite difference method and discrete element method. This model takes into account predetermined cutting and caving ratios, as well as drawing intervals. To examine the caving process and roof particles, three different drawing sequences were examined: sequential drawing, segmented sequential drawing, and intermittent drawing. The findings suggest that, in terms of the reset shape of the drawing body before individual and entire caving, the segmented sequential drawing method exhibits noticeable drawbacks compared to the other two methods. From the perspective of the drawing weight, following “closing drawing opening when seeing gangue”, the sequential drawing, segmented sequential drawing, and intermittent drawing methods can yield 32.42 t, 26.87 t, and 35.78 t of top coal, with corresponding recovery rates of 73.39%, 60.81%, and 82.97%. Therefore, it can be concluded that intermittent drawing is suitable for implementation on LTCC working face 12,309.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5200-5210"},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1944","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Wang, Ziyao Yang, Xiangjun Chen, Shuailong Feng
{"title":"Numerical simulation analysis of effect of borehole gas extraction under fluid-structure interaction","authors":"Lin Wang, Ziyao Yang, Xiangjun Chen, Shuailong Feng","doi":"10.1002/ese3.1945","DOIUrl":"https://doi.org/10.1002/ese3.1945","url":null,"abstract":"<p>To study the effect of coal pressure on gas extraction under fluid-solid coupling, the effect of gas extraction radius under different pore sizes and treatment methods was simulated by using COMSOL Multiphysics software, the time evolution law of gas pressure on coal surface was obtained, and the numerical simulation results were verified by the observation of flow rate and concentration in experimental mine combined with fluid-solid interaction. The results show that the distance of extraction radius increases with the increase of borehole diameter, and the relation between extraction time and extraction radius is a power function, but the increase gets smaller and smaller until it becomes zero. For Φ98 mm borehole and Φ120 mm borehole, hydraulic treatment can increase the efficiency of gas extraction by 31.3% and 22.7%, respectively. For hydraulic treatment and conventional treatment, the ratio of gas drainage effect by enlarging hole size is 6.3% and 13.8% respectively. Compared with the areas without gas extraction under the four conditions, the descending speed of gas pressure from fast to slow is Φ120 mm hydraulic flushing treatment, Φ98 mm hydraulic flushing treatment, Φ120 mm conventional treatment, Φ98 mm conventional treatment. Compared with four different conditions, after 180 days of extraction the coal gas pressure decreased by 75.3% within reasonable hole spacing. At the same time, in multi-hole pumping, the influence area of adjacent borehole is larger than that of single-hole pumping, and the spacing of borehole should be less than twice the radius of pumping.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"5185-5199"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive evaluation of rockburst risk by multiparameter characteristics based on microseismic signals: A case study","authors":"Yong-yuan Li, Xin-yuan Tian, Xiu-feng Zhang, Shun Hu, Rupei Zhang","doi":"10.1002/ese3.1909","DOIUrl":"https://doi.org/10.1002/ese3.1909","url":null,"abstract":"<p>Nowadays, the seismological monitoring system in China is a valuable tool in the rockburst risk evaluation for deep coal mines. In the past, only parameters, like source location and energy, are widely used to estimate the risk level of rockburst. Sometimes, it is effective; however, some other important physical parameters, such as apparent stress drop, static stress drop, P-wave velocity, and moment tensor, should also be included in order to improve the accuracy of risk assessment. In this study, these parameters are calculated using mine tremor signals recorded in the LW35001 workface of Liangbaosi Coal Mine. These calculations provide an overall identification of periodical stress distribution and rock mass energy-releasing type under high concentrated stress. Via linear moment tensor inversion procedure, the source mechanism of mine tremors and stress state of the rock mass is determined whether it is risk or not to underground roadway. This comprehensive analysis provides a specific guidance for rockburst prevention for coal mine management, that is, knowing when and where measures must be taken to decrease the risk level or induce the occurrence of rockburst under control.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4624-4640"},"PeriodicalIF":3.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1909","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}