Muhammad Shoaib Saleem, Javed Rashid, Sajjad Ahmad, Ali M. Al-Shaery, Saad Althobaiti, Muhammad Faheem
{"title":"通过时间融合变压器预测拉丁美洲国家和加拿大的绿色能源生产","authors":"Muhammad Shoaib Saleem, Javed Rashid, Sajjad Ahmad, Ali M. Al-Shaery, Saad Althobaiti, Muhammad Faheem","doi":"10.1002/ese3.2091","DOIUrl":null,"url":null,"abstract":"<p>Forecasting green energy is crucial in diminishing dependence on fossil fuels and fostering sustainable development. However, it encounters notable challenges, such as variable demand, restricted data availability, the integration of various datasets, and the necessity for precise long-term projections. This study thoughtfully examines these issues using the temporal fusion transformer (TFT) model to project green energy production across five Latin American nations (Argentina, Brazil, Chile, Colombia, and Mexico) and Canada, drawing on data from 1965 to 2023. The performance of the proposed TFT is more authentic as compared with the gated recurrent unit (GRU), the long short-term memory (LSTM), deep autoregression (DeepAR), and the meta graph-based convolutional recurrent network (MegaCRN). The TFT has a mean square error (MSE) of 0.0003, root mean square error (RMSE) of 0.0173, mean absolute error (MAE) of 0.0112 and mean absolute percentage error (MAPE) of 1.76%. From the preceding results, it is clear that the proposed TFT model can identify dynamic energy patterns that will contribute towards achieving sustainable development goals by the end of 2040.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 5","pages":"2262-2283"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2091","citationCount":"0","resultStr":"{\"title\":\"Forecasting Green Energy Production in Latin American Countries and Canada via Temporal Fusion Transformer\",\"authors\":\"Muhammad Shoaib Saleem, Javed Rashid, Sajjad Ahmad, Ali M. Al-Shaery, Saad Althobaiti, Muhammad Faheem\",\"doi\":\"10.1002/ese3.2091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forecasting green energy is crucial in diminishing dependence on fossil fuels and fostering sustainable development. However, it encounters notable challenges, such as variable demand, restricted data availability, the integration of various datasets, and the necessity for precise long-term projections. This study thoughtfully examines these issues using the temporal fusion transformer (TFT) model to project green energy production across five Latin American nations (Argentina, Brazil, Chile, Colombia, and Mexico) and Canada, drawing on data from 1965 to 2023. The performance of the proposed TFT is more authentic as compared with the gated recurrent unit (GRU), the long short-term memory (LSTM), deep autoregression (DeepAR), and the meta graph-based convolutional recurrent network (MegaCRN). The TFT has a mean square error (MSE) of 0.0003, root mean square error (RMSE) of 0.0173, mean absolute error (MAE) of 0.0112 and mean absolute percentage error (MAPE) of 1.76%. From the preceding results, it is clear that the proposed TFT model can identify dynamic energy patterns that will contribute towards achieving sustainable development goals by the end of 2040.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 5\",\"pages\":\"2262-2283\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2091\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Forecasting Green Energy Production in Latin American Countries and Canada via Temporal Fusion Transformer
Forecasting green energy is crucial in diminishing dependence on fossil fuels and fostering sustainable development. However, it encounters notable challenges, such as variable demand, restricted data availability, the integration of various datasets, and the necessity for precise long-term projections. This study thoughtfully examines these issues using the temporal fusion transformer (TFT) model to project green energy production across five Latin American nations (Argentina, Brazil, Chile, Colombia, and Mexico) and Canada, drawing on data from 1965 to 2023. The performance of the proposed TFT is more authentic as compared with the gated recurrent unit (GRU), the long short-term memory (LSTM), deep autoregression (DeepAR), and the meta graph-based convolutional recurrent network (MegaCRN). The TFT has a mean square error (MSE) of 0.0003, root mean square error (RMSE) of 0.0173, mean absolute error (MAE) of 0.0112 and mean absolute percentage error (MAPE) of 1.76%. From the preceding results, it is clear that the proposed TFT model can identify dynamic energy patterns that will contribute towards achieving sustainable development goals by the end of 2040.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.