EJNMMI ResearchPub Date : 2024-05-03DOI: 10.1186/s13550-024-01108-3
Sunju Choi, Yong-il Kim, Sangwon Han, Jae Kwang Yun, Geun Dong Lee, Sehoon Choi, Hyeong Ryul Kim, Yong-Hee Kim, Dong Kwan Kim, Seung-Il Park, Jin-Sook Ryu
{"title":"Distinguishing thymic cysts from low-risk thymomas via [18F]FDG PET/CT","authors":"Sunju Choi, Yong-il Kim, Sangwon Han, Jae Kwang Yun, Geun Dong Lee, Sehoon Choi, Hyeong Ryul Kim, Yong-Hee Kim, Dong Kwan Kim, Seung-Il Park, Jin-Sook Ryu","doi":"10.1186/s13550-024-01108-3","DOIUrl":"https://doi.org/10.1186/s13550-024-01108-3","url":null,"abstract":"Thymic cysts are a rare benign disease that needs to be distinguished from low-risk thymoma. [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is a non-invasive imaging technique used in the differential diagnosis of thymic epithelial tumours, but its usefulness for thymic cysts remains unclear. Our study evaluated the utility of visual findings and quantitative parameters of [18F]FDG PET/CT for differentiating between thymic cysts and low-risk thymomas. Patients who underwent preoperative [18F]FDG PET/CT followed by thymectomy for a thymic mass were retrospectively analyzed. The visual [18F]FDG PET/CT findings evaluated were PET visual grade, PET central metabolic defect, and CT shape. The quantitative [18F]FDG PET/CT parameters evaluated were PET maximum standardized uptake value (SUVmax), CT diameter (cm), and CT attenuation in Hounsfield units (HU). Findings and parameters for differentiating thymic cysts from low-risk thymomas were assessed using Pearson’s chi-square test, the Mann-Whitney U-test, and receiver operating characteristics (ROC) curve analysis. Seventy patients (18 thymic cysts and 52 low-risk thymomas) were finally included. Visual findings of PET visual grade (P < 0.001) and PET central metabolic defect (P < 0.001) showed significant differences between thymic cysts and low-risk thymomas, but CT shape did not. Among the quantitative parameters, PET SUVmax (P < 0.001), CT diameter (P < 0.001), and CT HU (P = 0.004) showed significant differences. In ROC analysis, PET SUVmax demonstrated the highest area under the curve (AUC) of 0.996 (P < 0.001), with a cut-off of equal to or less than 2.1 having a sensitivity of 100.0% and specificity of 94.2%. The AUC of PET SUVmax was significantly larger than that of CT diameter (P = 0.009) and CT HU (P = 0.004). Among the [18F]FDG PET/CT parameters examined, low FDG uptake (SUVmax ≤ 2.1, equal to or less than the mediastinum) is a strong diagnostic marker for a thymic cyst. PET visual grade and central metabolic defect are easily accessible findings.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"124 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-05-03DOI: 10.1186/s13550-024-01103-8
Obada M. Alzghool, Richard Aarnio, Jatta S. Helin, Saara Wahlroos, Thomas Keller, Markus Matilainen, Junel Solis, Jonathan J. Danon, Michael Kassiou, Anniina Snellman, Olof Solin, Juha O. Rinne, Merja Haaparanta‑Solin
{"title":"Correction: Glial reactivity in a mouse model of beta-amyloid deposition assessed by PET imaging of P2X7 receptor and TSPO using [11C]SMW139 and [18F]F-DPA","authors":"Obada M. Alzghool, Richard Aarnio, Jatta S. Helin, Saara Wahlroos, Thomas Keller, Markus Matilainen, Junel Solis, Jonathan J. Danon, Michael Kassiou, Anniina Snellman, Olof Solin, Juha O. Rinne, Merja Haaparanta‑Solin","doi":"10.1186/s13550-024-01103-8","DOIUrl":"https://doi.org/10.1186/s13550-024-01103-8","url":null,"abstract":"<p><b>Correction: EJNMMI Research (2024) 14:25</b></p><p><b>https://doi.org/10.1186/s13550-024-01085-7</b>.</p><p>Following publication of the article, the following errors were brought to the attention of the journal: In Figures 5, 6, and 7, white squares had been erroneously included behind the brain section images during production of the article, and the affiliations information of the article was incomplete. The published article has since been corrected.</p><h3>Authors and Affiliations</h3><ol><li><p>PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku, 20520, Finland</p><p>Obada M. Alzghool, Richard Aarnio, Jatta S. Helin, Anniina Snellman & Merja Haaparanta‑Solin</p></li><li><p>Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, Turku, 20520, Finland</p><p>Obada M. Alzghool, Richard Aarnio, Jatta S. Helin & Merja Haaparanta‑Solin</p></li><li><p>Drug Research Doctoral Programme, University of Turku, Turku, Finland</p><p>Obada M. Alzghool & Richard Aarnio</p></li><li><p>Turku University Hospital, Turku PET Centre, Kiinamyllynkatu 4-8, 20520, Turku, Finland</p><p>Obada M. Alzghool, Markus Matilainen & Juha O. Rinne</p></li><li><p>Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland</p><p>Saara Wahlroos, Thomas Keller & Olof Solin</p></li><li><p>Turku BioImaging, Åbo Akademi University and University of Turku, Turku, Finland</p><p>Junel Solis</p></li><li><p>School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia</p><p>Jonathan J. Danon & Michael Kassiou</p></li><li><p>Department of Chemistry, University of Turku, Henrikinkatu 2, Turku, 20500, Finland</p><p>Olof Solin</p></li><li><p>Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Kiinamyllynkatu, Turku, 4‑8, 20520, Finland</p><p>Olof Solin</p></li><li><p>Department of Neurology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland</p><p>Juha O. Rinne</p></li></ol><span>Authors</span><ol><li><span>Obada M. Alzghool</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Richard Aarnio</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jatta S. Helin</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Saara Wahlroos</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Thomas Keller</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Markus Matilainen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"45 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-29DOI: 10.1186/s13550-024-01092-8
Yu-Peng Zhou, Moses Q. Wilks, Maeva Dhaynaut, Nicolas J. Guehl, Danielle R. Vesper, Sung-Hyun Moon, Peter A. Rice, Georges El Fakhri, Marc D. Normandin, Pedro Brugarolas
{"title":"Radiosynthesis automation, non-human primate biodistribution and dosimetry of K+ channel tracer [11C]3MeO4AP","authors":"Yu-Peng Zhou, Moses Q. Wilks, Maeva Dhaynaut, Nicolas J. Guehl, Danielle R. Vesper, Sung-Hyun Moon, Peter A. Rice, Georges El Fakhri, Marc D. Normandin, Pedro Brugarolas","doi":"10.1186/s13550-024-01092-8","DOIUrl":"https://doi.org/10.1186/s13550-024-01092-8","url":null,"abstract":"4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [11C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compatible automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP in non-human primates (NHPs). Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with four bed positions and 13 passes over a total scan time of ~ 150 min. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. Fully automated radiosynthesis of [11C]3MeO4AP was achieved with 7.3 ± 1.2% (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [11C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [11C]3MeO4AP was 4.0 ± 0.6 μSv/MBq. No significant changes in vital signs were observed during the scan. A cGMP-compatible automated radiosynthesis of [11C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP was successfully evaluated in NHPs. [11C]3MeO4AP shows lower average effective dose than [18F]3F4AP and similar average effective dose as other carbon-11 tracers.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"108 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-17DOI: 10.1186/s13550-024-01095-5
Amir Karimzadeh, Kian Baradaran-Salimi, Berthold Voges, Ivayla Apostolova, Thomas Sauvigny, Michael Lanz, Susanne Klutmann, Stefan Stodieck, Philipp T. Meyer, Ralph Buchert
{"title":"Short post-injection seizure duration is associated with reduced power of ictal brain perfusion SPECT to lateralize the seizure onset zone","authors":"Amir Karimzadeh, Kian Baradaran-Salimi, Berthold Voges, Ivayla Apostolova, Thomas Sauvigny, Michael Lanz, Susanne Klutmann, Stefan Stodieck, Philipp T. Meyer, Ralph Buchert","doi":"10.1186/s13550-024-01095-5","DOIUrl":"https://doi.org/10.1186/s13550-024-01095-5","url":null,"abstract":"The aim of this study was to assess the impact of the post-injection electrical seizure duration on the identification of the seizure onset zone (SOZ) in ictal brain perfusion SPECT in presurgical evaluation of drug-resistant epilepsy. 176 ictal SPECT performed with 99mTc-HMPAO (n = 140) or -ECD (n = 36) were included retrospectively. Visual interpretation of the SPECT images (together with individual MRI and statistical hyperperfusion maps) with respect to lateralization (right, left, none) and localization (temporal, frontal, parietal, occipital) of the SOZ was performed by 3 independent readers. Between-readers agreement was characterized by Fleiss’ κ. An ictal SPECT was considered \"lateralizing\" if all readers agreed on right or left hemisphere. It was considered \"localizing\" if it was lateralizing and all readers agreed on the same lobe within the same hemisphere. The impact of injection latency and post-injection seizure duration on the proportion of lateralizing/localizing SPECT was tested by ANOVA with dichotomized (by the median) injection latency and post-injection seizure duration as between-subjects factors. Median [interquartile range] (full range) of injection latency and post-injection seizure duration were 30 [24, 40] (3–120) s and 50 [27, 70] (-20–660) s, respectively. Fleiss’ κ for lateralization of the SOZ was largest for the combination of early (< 30 s) injection and long (> 50 s) post-injection seizure duration (κ = 0.894, all other combinations κ = 0.659–0.734). Regarding Fleiss’ κ for localization of the SOZ in the 141 (80.1%) lateralizing SPECT, it was largest for early injection and short post-injection seizure duration (κ = 0.575, all other combinations κ = 0.329–0.368). The proportion of lateralizing SPECT was lower with short compared to long post-injection seizure duration (estimated marginal means 74.3% versus 86.3%, p = 0.047). The effect was mainly driven by cases with very short post-injection seizure duration ≤ 10 s (53.8% lateralizing). Injection latency in the considered range had no significant impact on the proportion of lateralizing SPECT (p = 0.390). The proportion of localizing SPECT among the lateralizing cases did not depend on injection latency or post-injection seizure duration (p ≥ 0.603). Short post-injection seizure duration is associated with a lower proportion of lateralizing cases in ictal brain perfusion SPECT.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"166 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-17DOI: 10.1186/s13550-024-01099-1
Ekaterina Shatalina, Thomas S. Whitehurst, Ellis Chika Onwordi, Barnabas J. Gilbert, Gaia Rizzo, Alex Whittington, Ayla Mansur, Hideo Tsukada, Tiago Reis Marques, Sridhar Natesan, Eugenii A. Rabiner, Matthew B. Wall, Oliver D. Howes
{"title":"Mitochondrial complex I density is associated with IQ and cognition in cognitively healthy adults: an in vivo [18F]BCPP-EF PET study","authors":"Ekaterina Shatalina, Thomas S. Whitehurst, Ellis Chika Onwordi, Barnabas J. Gilbert, Gaia Rizzo, Alex Whittington, Ayla Mansur, Hideo Tsukada, Tiago Reis Marques, Sridhar Natesan, Eugenii A. Rabiner, Matthew B. Wall, Oliver D. Howes","doi":"10.1186/s13550-024-01099-1","DOIUrl":"https://doi.org/10.1186/s13550-024-01099-1","url":null,"abstract":"Mitochondrial function plays a key role in regulating neurotransmission and may contribute to general intelligence. Mitochondrial complex I (MC-I) is the largest enzyme of the respiratory chain. Recently, it has become possible to measure MC-I distribution in vivo, using a novel positron emission tomography tracer [18F]BCPP-EF, thus, we set out to investigate the association between MC-I distribution and measures of cognitive function in the living healthy brain. Analyses were performed in a voxel-wise manner and identified significant associations between [18F]BCPP-EF DVRCS−1 in the precentral gyrus and parietal lobes and WAIS-IV predicted IQ, WAIS-IV arithmetic and WAIS-IV symbol-digit substitution scores (voxel-wise Pearson’s correlation coefficients transformed to Z-scores, thresholded at Z = 2.3 family-wise cluster correction at p < 0.05, n = 16). Arithmetic scores were associated with middle frontal and post-central gyri tracer uptake, symbol-digit substitution scores were associated with precentral gyrus tracer uptake. RAVLT recognition scores were associated with [18F]BCPP-EF DVRCS−1 in the middle frontal gyrus, post-central gyrus, occipital and parietal regions (n = 20). Taken together, our findings support the theory that mitochondrial function may contribute to general intelligence and indicate that interindividual differences in MC-I should be a key consideration for research into mitochondrial dysfunction in conditions with cognitive impairment.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"176 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-16DOI: 10.1186/s13550-024-01104-7
Emily Nicole Holy, Elizabeth Li, Anjan Bhattarai, Evan Fletcher, Evelyn R. Alfaro, Danielle J. Harvey, Benjamin A. Spencer, Simon R. Cherry, Charles S. DeCarli, Audrey P. Fan
{"title":"Non-invasive quantification of 18F-florbetaben with total-body EXPLORER PET","authors":"Emily Nicole Holy, Elizabeth Li, Anjan Bhattarai, Evan Fletcher, Evelyn R. Alfaro, Danielle J. Harvey, Benjamin A. Spencer, Simon R. Cherry, Charles S. DeCarli, Audrey P. Fan","doi":"10.1186/s13550-024-01104-7","DOIUrl":"https://doi.org/10.1186/s13550-024-01104-7","url":null,"abstract":"Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort. 18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 MBq) in 3 individuals with Alzheimer’s disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-derived input functions were extracted from the descending aorta with manual regions of interest based on the first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes (VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential ( $$ {BP}_{ND})$$ was also calculated from the multi-reference tissue model (MRTM). Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and precuneus, consistent with $$ {BP}_{ND}$$ analysis. $$ {BP}_{ND} $$ and VT from kinetic models were correlated (r² = 0.46, P < 2 $$ {e}^{-16})$$ with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the IDIFs. VT from 2TCM was highly correlated ( $$ {r}^{2}$$ = 0.65, P < 2 $$ {e}^{-16}$$ ) with Logan graphical VT estimation. Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to $$ {BP}_{ND} $$ in amyloid-positive and amyloid-negative older individuals.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"292 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-12DOI: 10.1186/s13550-023-01059-1
Yuanyuan Sun, Zhaoping Cheng, Jianfeng Qiu, Weizhao Lu
{"title":"Performance and application of the total-body PET/CT scanner: a literature review","authors":"Yuanyuan Sun, Zhaoping Cheng, Jianfeng Qiu, Weizhao Lu","doi":"10.1186/s13550-023-01059-1","DOIUrl":"https://doi.org/10.1186/s13550-023-01059-1","url":null,"abstract":"The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"4 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-06DOI: 10.1186/s13550-024-01101-w
Christof Rottenburger, Michael Hentschel, Markus Fürstner, Lisa McDougall, Danijela Kottoros, Felix Kaul, Rosalba Mansi, Melpomeni Fani, A. Hans Vija, Roger Schibli, Susanne Geistlich, Martin Behe, Emanuel R. Christ, Damian Wild
{"title":"In-vivo inhibition of neutral endopeptidase 1 results in higher absorbed tumor doses of [177Lu]Lu-PP-F11N in humans: the lumed phase 0b study","authors":"Christof Rottenburger, Michael Hentschel, Markus Fürstner, Lisa McDougall, Danijela Kottoros, Felix Kaul, Rosalba Mansi, Melpomeni Fani, A. Hans Vija, Roger Schibli, Susanne Geistlich, Martin Behe, Emanuel R. Christ, Damian Wild","doi":"10.1186/s13550-024-01101-w","DOIUrl":"https://doi.org/10.1186/s13550-024-01101-w","url":null,"abstract":"A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"2 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-05DOI: 10.1186/s13550-024-01097-3
Cristina E. Popescu, Boya Zhang, Thomas Sartoretti, Noel Spielhofer, Stephan Skawran, Jakob Heimer, Michael Messerli, Alexander Sauter, Martin W. Huellner, Philipp A. Kaufmann, Irene A. Burger, Alexander Maurer
{"title":"Evaluating the biodistribution for [68Ga]Ga-PSMA-11 and [18F]F-PSMA-1007 PET/CT with an inter- and intrapatient based analysis","authors":"Cristina E. Popescu, Boya Zhang, Thomas Sartoretti, Noel Spielhofer, Stephan Skawran, Jakob Heimer, Michael Messerli, Alexander Sauter, Martin W. Huellner, Philipp A. Kaufmann, Irene A. Burger, Alexander Maurer","doi":"10.1186/s13550-024-01097-3","DOIUrl":"https://doi.org/10.1186/s13550-024-01097-3","url":null,"abstract":"Liver uptake in [68Ga]Ga-PSMA-11 PET is used as an internal reference in addition to clinical parameters to select patients for [177Lu]Lu-PSMA-617 radioligand therapy (RLT). Due to increased demand, [68Ga]Ga-PSMA-11 was replaced by [18F]F-PSMA-1007, a more lipophilic tracer with different biodistribution and splenic uptake was suggested as a new internal reference. We compared the intra-patient tracer distribution between [68Ga]Ga-PSMA-11 and [18F]F-PSMA-1007. Fifty patients who underwent PET examinations in two centers with both [18F]F-PSMA-1007 and [68Ga]Ga-PSMA-11 within one year were included. Mean standardized uptake values (SUVmean) were obtained for liver, spleen, salivary glands, blood pool, and bone. Primary tumor, local recurrence, lymph node, bone or visceral metastasis were also assessed for intra- and inter-individual comparison. Liver SUVmean was significantly higher with [18F]F-PSMA-1007 (11.7 ± 3.9) compared to [68Ga]Ga-PSMA-11 (5.4 ± 1.7, p < .05) as well as splenic SUVmean (11.2 ± 3.5 vs.8.1 ± 3.5, p < .05). The blood pool was comparable between the two scans. Malignant lesions did not show higher SUVmean on [18F]F-PSMA-1007. Intra-individual comparison of liver uptake between the two scans showed a linear association for liver uptake with SUVmean [68Ga]Ga-PSMA-11 = 0.33 x SUVmean [18F]F-PSMA-1007 + 1.52 (r = .78, p < .001). Comparing biodistribution of [68Ga]Ga and [18F]F tracers, liver uptake on [68Ga]Ga-PSMA-11 PET is the most robust internal reference value. Liver uptake of [18F]F-PSMA-1007 was significantly higher, but so was the splenic uptake. The strong intra-individual association of hepatic accumulation between the two scans may allow using of a conversion factor for [18F]F-PSMA-1007 as a basis for RLT selection.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"58 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EJNMMI ResearchPub Date : 2024-04-04DOI: 10.1186/s13550-024-01102-9
Gregory Mathoux, Cecilia Boccalini, Aurelien Lathuliere, Max Scheffler, Giovanni B. Frisoni, Valentina Garibotto
{"title":"Neuroimaging-guided diagnosis of possible FTLD-FUS pathology: a case report","authors":"Gregory Mathoux, Cecilia Boccalini, Aurelien Lathuliere, Max Scheffler, Giovanni B. Frisoni, Valentina Garibotto","doi":"10.1186/s13550-024-01102-9","DOIUrl":"https://doi.org/10.1186/s13550-024-01102-9","url":null,"abstract":"This case report presents a patient with progressive memory loss and choreiform movements. Neuropsychological tests indicated multi-domain amnestic mild cognitive impairment (aMCI), and neurological examination revealed asymmetrical involuntary hyperkinetic movements. Imaging studies showed severe left-sided atrophy and hypometabolism in the left frontal and temporoparietal cortex. [18F]Flortaucipir PET exhibited moderately increased tracer uptake in hypometabolic areas. The diagnosis initially considered Alzheimer’s disease (AD), frontotemporal degeneration (FTD), and corticobasal degeneration (CBD), cerebral hemiatrophy syndrome, but imaging and cerebrospinal fluid analysis excluded AD and suggested fused-in-sarcoma-associated FTD (FTLD-FUS), a subtype of the behavioural variant of FTD. Our case highlights that despite the lack of specific FUS biomarkers the combination of clinical features and neuroimaging biomarkers can guide choosing the most likely differential diagnosis in a complex neurological case. Imaging in particular allowed an accurate measure of the topography and severity of neurodegeneration and the exclusion of AD-related pathology.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"43 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}