EMBO Molecular Medicine最新文献

筛选
英文 中文
Inhibition of asparagine synthetase effectively retards polycystic kidney disease progression. 抑制天冬酰胺合成酶可有效延缓多囊肾病的进展。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-04-29 DOI: 10.1038/s44321-024-00071-9
Sara Clerici, Christine Podrini, Davide Stefanoni, Gianfranco Distefano, Laura Cassina, Maria Elena Steidl, Laura Tronci, Tamara Canu, Marco Chiaravalli, Daniel Spies, Thomas A Bell, Ana Sh Costa, Antonio Esposito, Angelo D'Alessandro, Christian Frezza, Angela Bachi, Alessandra Boletta
{"title":"Inhibition of asparagine synthetase effectively retards polycystic kidney disease progression.","authors":"Sara Clerici, Christine Podrini, Davide Stefanoni, Gianfranco Distefano, Laura Cassina, Maria Elena Steidl, Laura Tronci, Tamara Canu, Marco Chiaravalli, Daniel Spies, Thomas A Bell, Ana Sh Costa, Antonio Esposito, Angelo D'Alessandro, Christian Frezza, Angela Bachi, Alessandra Boletta","doi":"10.1038/s44321-024-00071-9","DOIUrl":"10.1038/s44321-024-00071-9","url":null,"abstract":"<p><p>Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1379-1403"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High fat diet ameliorates mitochondrial cardiomyopathy in CHCHD10 mutant mice. 高脂饮食可改善 CHCHD10 突变小鼠的线粒体心肌病。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-09 DOI: 10.1038/s44321-024-00067-5
Nneka Southwell, Onorina Manzo, Sandra Bacman, Dazhi Zhao, Nicole M Sayles, Jalia Dash, Keigo Fujita, Marilena D'Aurelio, Annarita Di Lorenzo, Giovanni Manfredi, Hibiki Kawamata
{"title":"High fat diet ameliorates mitochondrial cardiomyopathy in CHCHD10 mutant mice.","authors":"Nneka Southwell, Onorina Manzo, Sandra Bacman, Dazhi Zhao, Nicole M Sayles, Jalia Dash, Keigo Fujita, Marilena D'Aurelio, Annarita Di Lorenzo, Giovanni Manfredi, Hibiki Kawamata","doi":"10.1038/s44321-024-00067-5","DOIUrl":"10.1038/s44321-024-00067-5","url":null,"abstract":"<p><p>Mutations in CHCHD10, a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation. To counteract this metabolic rewiring, heterozygous S55L mice were subjected to chronic high-fat diet (HFD) to decrease insulin sensitivity and glucose uptake and enhance fatty acid utilization in the heart. HFD ameliorated the ventricular dysfunction of mutant hearts and significantly extended the survival of mutant female mice affected by severe pregnancy-induced cardiomyopathy. Gene expression profiles confirmed that HFD increased fatty acid utilization and ameliorated cardiomyopathy markers. Importantly, HFD also decreased accumulation of aggregated CHCHD10 in the S55L heart, suggesting activation of quality control mechanisms. Overall, our findings indicate that metabolic therapy can be effective in mitochondrial cardiomyopathies associated with proteotoxic stress.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1352-1378"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuraminidase inhibition promotes the collective migration of neurons and recovery of brain function. 神经氨酸酶抑制剂可促进神经元的集体迁移和大脑功能的恢复。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-24 DOI: 10.1038/s44321-024-00073-7
Mami Matsumoto, Katsuyoshi Matsushita, Masaya Hane, Chentao Wen, Chihiro Kurematsu, Haruko Ota, Huy Bang Nguyen, Truc Quynh Thai, Vicente Herranz-Pérez, Masato Sawada, Koichi Fujimoto, José Manuel García-Verdugo, Koutarou D Kimura, Tatsunori Seki, Chihiro Sato, Nobuhiko Ohno, Kazunobu Sawamoto
{"title":"Neuraminidase inhibition promotes the collective migration of neurons and recovery of brain function.","authors":"Mami Matsumoto, Katsuyoshi Matsushita, Masaya Hane, Chentao Wen, Chihiro Kurematsu, Haruko Ota, Huy Bang Nguyen, Truc Quynh Thai, Vicente Herranz-Pérez, Masato Sawada, Koichi Fujimoto, José Manuel García-Verdugo, Koutarou D Kimura, Tatsunori Seki, Chihiro Sato, Nobuhiko Ohno, Kazunobu Sawamoto","doi":"10.1038/s44321-024-00073-7","DOIUrl":"10.1038/s44321-024-00073-7","url":null,"abstract":"<p><p>In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1228-1253"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis. CNA25 作为一种潜在的全身念珠菌全细胞疫苗的免疫原性和有效性。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-23 DOI: 10.1038/s44321-024-00080-8
Satya Ranjan Sahu, Abinash Dutta, Doureradjou Peroumal, Premlata Kumari, Bhabasha Gyanadeep Utakalaja, Shraddheya Kumar Patel, Narottam Acharya
{"title":"Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis.","authors":"Satya Ranjan Sahu, Abinash Dutta, Doureradjou Peroumal, Premlata Kumari, Bhabasha Gyanadeep Utakalaja, Shraddheya Kumar Patel, Narottam Acharya","doi":"10.1038/s44321-024-00080-8","DOIUrl":"10.1038/s44321-024-00080-8","url":null,"abstract":"<p><p>Disseminated fungal infections account for ~1.5 million deaths per year worldwide, and mortality may increase further due to a rise in the number of immunocompromised individuals and drug-resistance fungal species. Since an approved antifungal vaccine is yet to be available, this study explored the immunogenicity and vaccine efficacy of a DNA polymerase mutant strain of Candida albicans. CNA25 is a pol32ΔΔ strain that exhibits growth defects and does not cause systemic candidiasis in mice. Immunized mice with live CNA25 were fully protected against C. albicans and C. parapsilosis but partially against C. tropicalis and C. glabrata infections. CNA25 induced steady expression of TLR2 and Dectin-1 receptors leading to a faster recognition and clearance by the immune system associated with the activation of protective immune responses mostly mediated by neutrophils, macrophages, NK cells, B cells, and CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Molecular blockade of Dectin-1, IL-17, IFNγ, and TNFα abolished resistance to reinfection. Altogether, this study suggested that CNA25 collectively activates innate, adaptive, and trained immunity to be a promising live whole-cell vaccine against systemic candidiasis.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1254-1283"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell migration into the damaged brain mediated by increased cell adhesion. 通过增强细胞粘附力,细胞迁移到受损大脑。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-24 DOI: 10.1038/s44321-024-00075-5
Jemima Becker, Francis Szele
{"title":"Cell migration into the damaged brain mediated by increased cell adhesion.","authors":"Jemima Becker, Francis Szele","doi":"10.1038/s44321-024-00075-5","DOIUrl":"10.1038/s44321-024-00075-5","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1223-1225"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice. 以肝脏内皮细胞为靶点的 GP64 伪型慢病毒载体可矫正 A 型血友病小鼠。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-04-29 DOI: 10.1038/s44321-024-00072-8
Michela Milani, Cesare Canepari, Simone Assanelli, Simone Merlin, Ester Borroni, Francesco Starinieri, Mauro Biffi, Fabio Russo, Anna Fabiano, Desirèe Zambroni, Andrea Annoni, Luigi Naldini, Antonia Follenzi, Alessio Cantore
{"title":"GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice.","authors":"Michela Milani, Cesare Canepari, Simone Assanelli, Simone Merlin, Ester Borroni, Francesco Starinieri, Mauro Biffi, Fabio Russo, Anna Fabiano, Desirèe Zambroni, Andrea Annoni, Luigi Naldini, Antonia Follenzi, Alessio Cantore","doi":"10.1038/s44321-024-00072-8","DOIUrl":"10.1038/s44321-024-00072-8","url":null,"abstract":"<p><p>Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1427-1450"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PML restrains p53 activity and cellular senescence in clear cell renal cell carcinoma. PML 抑制透明细胞肾细胞癌中 p53 的活性和细胞衰老。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-10 DOI: 10.1038/s44321-024-00077-3
Matilde Simoni, Chiara Menegazzi, Cristina Fracassi, Claudia C Biffi, Francesca Genova, Nazario Pio Tenace, Roberta Lucianò, Andrea Raimondi, Carlo Tacchetti, James Brugarolas, Davide Mazza, Rosa Bernardi
{"title":"PML restrains p53 activity and cellular senescence in clear cell renal cell carcinoma.","authors":"Matilde Simoni, Chiara Menegazzi, Cristina Fracassi, Claudia C Biffi, Francesca Genova, Nazario Pio Tenace, Roberta Lucianò, Andrea Raimondi, Carlo Tacchetti, James Brugarolas, Davide Mazza, Rosa Bernardi","doi":"10.1038/s44321-024-00077-3","DOIUrl":"10.1038/s44321-024-00077-3","url":null,"abstract":"<p><p>Clear-cell renal cell carcinoma (ccRCC), the major subtype of RCC, is frequently diagnosed at late/metastatic stage with 13% 5-year disease-free survival. Functional inactivation of the wild-type p53 protein is implicated in ccRCC therapy resistance, but the detailed mechanisms of p53 malfunction are still poorly characterized. Thus, a better understanding of the mechanisms of disease progression and therapy resistance is required. Here, we report a novel ccRCC dependence on the promyelocytic leukemia (PML) protein. We show that PML is overexpressed in ccRCC and that PML depletion inhibits cell proliferation and relieves pathologic features of anaplastic disease in vivo. Mechanistically, PML loss unleashed p53-dependent cellular senescence thus depicting a novel regulatory axis to limit p53 activity and senescence in ccRCC. Treatment with the FDA-approved PML inhibitor arsenic trioxide induced PML degradation and p53 accumulation and inhibited ccRCC expansion in vitro and in vivo. Therefore, by defining non-oncogene addiction to the PML gene, our work uncovers a novel ccRCC vulnerability and lays the foundation for repurposing an available pharmacological intervention to restore p53 function and chemosensitivity.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1324-1351"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron transport chain capacity expands yellow fever vaccine immunogenicity. 电子传递链能力扩大了黄热病疫苗的免疫原性。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-14 DOI: 10.1038/s44321-024-00065-7
Darren Zl Mok, Danny Jh Tng, Jia Xin Yee, Valerie Sy Chew, Christine Yl Tham, Justin Sg Ooi, Hwee Cheng Tan, Summer L Zhang, Lowell Z Lin, Wy Ching Ng, Lavanya Lakshmi Jeeva, Ramya Murugayee, Kelvin K-K Goh, Tze-Peng Lim, Liang Cui, Yin Bun Cheung, Eugenia Z Ong, Kuan Rong Chan, Eng Eong Ooi, Jenny G Low
{"title":"Electron transport chain capacity expands yellow fever vaccine immunogenicity.","authors":"Darren Zl Mok, Danny Jh Tng, Jia Xin Yee, Valerie Sy Chew, Christine Yl Tham, Justin Sg Ooi, Hwee Cheng Tan, Summer L Zhang, Lowell Z Lin, Wy Ching Ng, Lavanya Lakshmi Jeeva, Ramya Murugayee, Kelvin K-K Goh, Tze-Peng Lim, Liang Cui, Yin Bun Cheung, Eugenia Z Ong, Kuan Rong Chan, Eng Eong Ooi, Jenny G Low","doi":"10.1038/s44321-024-00065-7","DOIUrl":"10.1038/s44321-024-00065-7","url":null,"abstract":"<p><p>Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1310-1323"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A broadly applicable protein-polymer adjuvant system for antiviral vaccines. 广泛适用于抗病毒疫苗的蛋白质聚合物佐剂系统。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-15 DOI: 10.1038/s44321-024-00076-4
Caiqian Wang, Yuanyuan Geng, Haoran Wang, Zeheng Ren, Qingxiu Hou, An Fang, Qiong Wu, Liqin Wu, Xiujuan Shi, Ming Zhou, Zhen F Fu, Jonathan F Lovell, Honglin Jin, Ling Zhao
{"title":"A broadly applicable protein-polymer adjuvant system for antiviral vaccines.","authors":"Caiqian Wang, Yuanyuan Geng, Haoran Wang, Zeheng Ren, Qingxiu Hou, An Fang, Qiong Wu, Liqin Wu, Xiujuan Shi, Ming Zhou, Zhen F Fu, Jonathan F Lovell, Honglin Jin, Ling Zhao","doi":"10.1038/s44321-024-00076-4","DOIUrl":"10.1038/s44321-024-00076-4","url":null,"abstract":"<p><p>Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1451-1483"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy. 糖尿病药物激活新生儿缺氧缺血性脑病模型中的神经保护途径。
IF 9 1区 医学
EMBO Molecular Medicine Pub Date : 2024-06-01 Epub Date: 2024-05-23 DOI: 10.1038/s44321-024-00079-1
Laura Poupon-Bejuit, Amy Geard, Nathan Millicheap, Eridan Rocha-Ferreira, Henrik Hagberg, Claire Thornton, Ahad A Rahim
{"title":"Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy.","authors":"Laura Poupon-Bejuit, Amy Geard, Nathan Millicheap, Eridan Rocha-Ferreira, Henrik Hagberg, Claire Thornton, Ahad A Rahim","doi":"10.1038/s44321-024-00079-1","DOIUrl":"10.1038/s44321-024-00079-1","url":null,"abstract":"<p><p>Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1284-1309"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信