Mona Breßer, Kevin D Siemens, Linda Schneider, Jonah E Lunnebach, Patrick Leven, Tim R Glowka, Kristin Oberländer, Elena De Domenico, Joachim L Schultze, Joachim Schmidt, Jörg C Kalff, Anja Schneider, Sven Wehner, Reiner Schneider
{"title":"Macrophage-induced enteric neurodegeneration leads to motility impairment during gut inflammation.","authors":"Mona Breßer, Kevin D Siemens, Linda Schneider, Jonah E Lunnebach, Patrick Leven, Tim R Glowka, Kristin Oberländer, Elena De Domenico, Joachim L Schultze, Joachim Schmidt, Jörg C Kalff, Anja Schneider, Sven Wehner, Reiner Schneider","doi":"10.1038/s44321-024-00189-w","DOIUrl":null,"url":null,"abstract":"<p><p>Current studies pictured the enteric nervous system and macrophages as modulators of neuroimmune processes in the inflamed gut. Expanding this view, we investigated the impact of enteric neuron-macrophage interactions on postoperative trauma and subsequent motility disturbances, i.e., postoperative ileus. In the early postsurgical phase, we detected strong neuronal activation, followed by transcriptional and translational signatures indicating neuronal death and synaptic damage. Simultaneously, our study revealed neurodegenerative profiles in macrophage-specific transcriptomes after postoperative trauma. Validating the role of resident and monocyte-derived macrophages, we depleted macrophages by CSF-1R-antibodies and used CCR2<sup>-/-</sup> mice, known for reduced monocyte infiltration, in POI studies. Only CSF-1R-antibody-treated animals showed decreased neuronal death and lessened synaptic decay, emphasizing the significance of resident macrophages. In human gut samples taken early and late during abdominal surgery, we substantiated the mouse model data and found reactive and apoptotic neurons and dysregulation in synaptic genes, indicating a species' overarching mechanism. Our study demonstrates that surgical trauma activates enteric neurons and induces neurodegeneration, mediated by resident macrophages, introducing neuroprotection as an option for faster recovery after surgery.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":"17 2","pages":"301-335"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00189-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current studies pictured the enteric nervous system and macrophages as modulators of neuroimmune processes in the inflamed gut. Expanding this view, we investigated the impact of enteric neuron-macrophage interactions on postoperative trauma and subsequent motility disturbances, i.e., postoperative ileus. In the early postsurgical phase, we detected strong neuronal activation, followed by transcriptional and translational signatures indicating neuronal death and synaptic damage. Simultaneously, our study revealed neurodegenerative profiles in macrophage-specific transcriptomes after postoperative trauma. Validating the role of resident and monocyte-derived macrophages, we depleted macrophages by CSF-1R-antibodies and used CCR2-/- mice, known for reduced monocyte infiltration, in POI studies. Only CSF-1R-antibody-treated animals showed decreased neuronal death and lessened synaptic decay, emphasizing the significance of resident macrophages. In human gut samples taken early and late during abdominal surgery, we substantiated the mouse model data and found reactive and apoptotic neurons and dysregulation in synaptic genes, indicating a species' overarching mechanism. Our study demonstrates that surgical trauma activates enteric neurons and induces neurodegeneration, mediated by resident macrophages, introducing neuroprotection as an option for faster recovery after surgery.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)