Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
EMBO Molecular Medicine Pub Date : 2025-02-01 Epub Date: 2025-02-05 DOI:10.1038/s44321-024-00179-y
Weonjin Yu, Yixin Xiao, Anusha Jayaraman, Yi-Chun Yen, Hae Ung Lee, Sven Pettersson, H Shawn Je
{"title":"Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors.","authors":"Weonjin Yu, Yixin Xiao, Anusha Jayaraman, Yi-Chun Yen, Hae Ung Lee, Sven Pettersson, H Shawn Je","doi":"10.1038/s44321-024-00179-y","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"249-264"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00179-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.

微生物代谢物调节杏仁核神经元的过度兴奋性和焦虑相关行为。
啮齿动物肠道菌群组成的变化与焦虑行为有关。然而,将微生物群及其代谢物与焦虑行为联系起来的潜在神经回路仍不清楚。使用未暴露于活微生物的雄性C57BL/6J无菌(GF)小鼠,观察到焦虑相关行为的增加与基底外侧杏仁核(BLA)中直接早期c-Fos基因的显著增加相关。这一现象与BLA锥体神经元的内在兴奋性和自发突触活性的增加相吻合,并与小电导钙活化钾(SK)通道电流的减少有关。重要的是,将GF小鼠定植于活微生物或微生物衍生代谢物吲哚中,可以恢复BLA锥体神经元中SK通道的活性,并减少焦虑行为表型。这些结果与微生物和/或微生物衍生的吲哚调节BLA神经元功能变化的分子机制一致。此外,这种微生物代谢物对焦虑的调节将这些结果与哺乳动物中与焦虑相关行为相关的古老进化保守防御机制联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信