Efil Bayam, Peggy Tilly, Stephan C Collins, José Rivera Alvarez, Meghna Kannan, Lucile Tonneau, Elena Brivio, Bruno Rinaldi, Romain Lecat, Noémie Schwaller, Ludovica Cotellessa, Sateesh Maddirevula, Fabiola Monteiro, Carlos M Guardia, João Paulo Kitajima, Fernando Kok, Mitsuhiro Kato, Ahlam A A Hamed, Mustafa A Salih, Saeed Al Tala, Mais O Hashem, Hiroko Tada, Hirotomo Saitsu, Mariano Stabile, Paolo Giacobini, Sylvie Friant, Zafer Yüksel, Mitsuko Nakashima, Fowzan S Alkuraya, Binnaz Yalcin, Juliette D Godin
{"title":"Bi-allelic variants in WDR47 cause a complex neurodevelopmental syndrome.","authors":"Efil Bayam, Peggy Tilly, Stephan C Collins, José Rivera Alvarez, Meghna Kannan, Lucile Tonneau, Elena Brivio, Bruno Rinaldi, Romain Lecat, Noémie Schwaller, Ludovica Cotellessa, Sateesh Maddirevula, Fabiola Monteiro, Carlos M Guardia, João Paulo Kitajima, Fernando Kok, Mitsuhiro Kato, Ahlam A A Hamed, Mustafa A Salih, Saeed Al Tala, Mais O Hashem, Hiroko Tada, Hirotomo Saitsu, Mariano Stabile, Paolo Giacobini, Sylvie Friant, Zafer Yüksel, Mitsuko Nakashima, Fowzan S Alkuraya, Binnaz Yalcin, Juliette D Godin","doi":"10.1038/s44321-024-00178-z","DOIUrl":null,"url":null,"abstract":"<p><p>Brain development requires the coordinated growth of structures and cues that are essential for forming neural circuits and cognitive functions. The corpus callosum, the largest interhemispheric connection, is formed by the axons of callosal projection neurons through a series of tightly regulated cellular events, including neuronal specification, migration, axon extension and branching. Defects in any of those steps can lead to a range of disorders known as syndromic corpus callosum dysgenesis (CCD). We report five unrelated families carrying bi-allelic variants in WDR47 presenting with CCD together with other neuroanatomical phenotypes such as microcephaly and enlarged ventricles. Using in vitro and in vivo mouse models and complementation assays, we show that WDR47 is required for survival of callosal neurons by contributing to the maintenance of mitochondrial and microtubule homeostasis. We further propose that severity of the CCD phenotype is determined by the degree of the loss of function caused by the human variants. Taken together, we identify WDR47 as a causative gene of a new neurodevelopmental syndrome characterized by corpus callosum abnormalities and other neuroanatomical malformations.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00178-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Brain development requires the coordinated growth of structures and cues that are essential for forming neural circuits and cognitive functions. The corpus callosum, the largest interhemispheric connection, is formed by the axons of callosal projection neurons through a series of tightly regulated cellular events, including neuronal specification, migration, axon extension and branching. Defects in any of those steps can lead to a range of disorders known as syndromic corpus callosum dysgenesis (CCD). We report five unrelated families carrying bi-allelic variants in WDR47 presenting with CCD together with other neuroanatomical phenotypes such as microcephaly and enlarged ventricles. Using in vitro and in vivo mouse models and complementation assays, we show that WDR47 is required for survival of callosal neurons by contributing to the maintenance of mitochondrial and microtubule homeostasis. We further propose that severity of the CCD phenotype is determined by the degree of the loss of function caused by the human variants. Taken together, we identify WDR47 as a causative gene of a new neurodevelopmental syndrome characterized by corpus callosum abnormalities and other neuroanatomical malformations.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)